Use this manual for TDS 310, TDS 320, and
TDS 350 oscilloscopes with serial numbers
B040100 and above.
Instrument Serial Numbers

Each instrument manufactured by Tektronix has a serial number on a panel insert or tag, or stamped on the chassis. The first letter in the serial number designates the country of manufacture. The last five digits of the serial number are assigned sequentially and are unique to each instrument. Those manufactured in the United States have six unique digits. The country of manufacture is identified as follows:

- **B010000** Tektronix, Inc., Beaverton, Oregon, USA
- **E200000** Tektronix United Kingdom, Ltd., London
- **J200000** Sony/Tektronix, Japan
- **H700000** Tektronix Holland, NV, Heerlen, The Netherlands

Instruments manufactured for Tektronix by external vendors outside the United States are assigned a two digit alpha code to identify the country of manufacture (e.g., JP for Japan, HK for Hong Kong, IL for Israel, etc.).

Tektronix, Inc., P.O. Box 500, Beaverton, OR 97077

Printed in U.S.A.

Copyright © Tektronix, Inc., 1993, 1994. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. The following are registered trademarks: TEKTRONIX, TEK, TEKPROBE, and SCOPE-MOBILE.
WARRANTY

Tektronix warrants that this product will be free from defects in materials and workmanship for a period of three (3) years from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; or c) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THIS PRODUCT IN LIEU OF ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX’ RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
German Postal Information

Certificate of the Manufacturer/Importer

We hereby certify that the TDS 310, TDS 320, and TDS 350 Two Channel Oscilloscopes and all factory-installed options complies with the RF Interference Suppression requirements of Postal Regulation Vfg. 243/1991, Amended per Vfg. 46/1992.

The German Postal Service was notified that the equipment is being marketed.

The German Postal Service has the right to re-test the series and to verify that it complies.

TEKTRONIX

Bescheinigung des Herstellers/Importeurs

Der Deutschen Bundespost wurde das Inverkehrbringen dieses Gerätes angezeigt und die Berechtigung zur Überprüfung der Serie auf Einhalten der Bestimmungen eingeräumt.

TEKTRONIX

NOTICE to the user/operator:

The German Postal Service requires that Systems assembled by the operator/user of this instrument must also comply with Postal Regulation, Vfg. 243/1991, Par. 2, Sect. 1.

HINWEIS für den Benutzer/Betreiber:

NOTICE to the user/operator:

The German Postal Service requires that this equipment, when used in a test setup, may only be operated if the requirements of Postal Regulation, Vfg. 243/1991, Par. 2, Sect. 1.8.1 are complied with.

HINWEIS für den Benutzer/Betreiber:

EC Declaration of Conformity

We

Tektronix Holland N.V.
Marktweg 73A
8444 AB Heereneveen
The Netherlands

declare under sole responsibility that the

TDS 310 Digitizing Oscilloscope

meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance was demonstrated to the following specifications as listed in the official Journal of the European Communities:

EN 50081-1 Emissions:
- EN 55022 Radiated, Class B
- EN 55022 Conducted, Class B
- EN 60555-2 Power Harmonics

EN 50082-1 Immunity:
- IEC 801-2 Electrostatic Discharge
- IEC 801-3 RF Radiated
- IEC 801-4 Fast Transients
- IEC 801-5 Surge
EC Declaration of Conformity

We

Tektronix Holland N.V.
Marktweg 73A
8444 AB Heereneven
The Netherlands

declare under sole responsibility that the

TDS 320 Digitizing Oscilloscope

meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance was demonstrated to the following specifications as listed in the official Journal of the European Communities:

EN 50081–1 Emissions:

EN 55022 Radiated, Class B
EN 55022 Conducted, Class B
EN 60555-2 Power Harmonics

EN 50082–1 Immunity:

IEC 801–2 Electrostatic Discharge
IEC 801–3 RF Radiated
IEC 801–4 Fast Transients
IEC 801–5 Surge
EC Declaration of Conformity

We

Tektronix Holland N.V.
Marktweg 73A
8444 AB Heerenveen
The Netherlands

declare under sole responsibility that the

TDS 350 Digitizing Oscilloscope

meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance was demonstrated to the following specifications as listed in the official Journal of the European Communities:

EN 50081–1 Emissions:
- EN 55022 Radiated, Class B
- EN 55022 Conducted, Class B
- EN 60555-2 Power Harmonics

EN 50082–1 Immunity:
- IEC 801–2 Electrostatic Discharge
- IEC 801–3 RF Radiated
- IEC 801–4 Fast Transients
- IEC 801–5 Surge
Table of Contents

Safety Summary .. xi
Service Safety Summary .. xiii
Preface ... xv

Introduction

Product Description .. 1-1
Options and Accessories .. 1-3
 Options .. 1-3
 Standard Accessories .. 1-5
 Optional Accessories .. 1-5
 Accessory Probes ... 1-6
 Accessory Cables ... 1-6

Getting Started

Start Up ... 2-1
 Line Fuse Replacement ... 2-2
Understanding the User Interface 2-3
Using the Probes .. 2-7
 Connecting a Probe .. 2-7
 Compensating a Probe ... 2-7
Using Autoset .. 2-11

Operation

Front Panel ... 3-3
 Display and Power Controls .. 3-4
 Vertical Controls .. 3-5
 Horizontal Controls .. 3-6
 Trigger Controls ... 3-7
 Miscellaneous Controls .. 3-8
 Display Map .. 3-9
 Inputs ... 3-10
Rear Panel .. 3-11
Table of Contents

Menu Maps .. 3-13
Manipulating Waveforms ... 3-17
 Vertical Operations ... 3-17
 Horizontal Operations 3-20
Displaying Math Waveforms 3-21
Saving and Recalling Waveforms 3-22
Triggering .. 3-25
 Edge Triggering ... 3-25
 Video Triggering .. 3-28
Taking Measurements ... 3-31
 Automated Measurements 3-31
 Taking Measurements with Cursors 3-35
Controlling Acquisition ... 3-39
Controlling the Display .. 3-41
Making Hardcopies
 (Option 14 Equipped Instruments Only) 3-43
 Configuring Hard Copy Output 3-43
Saving and Recalling
 Front-Panel Setups ... 3-45
Using the Utility Menu ... 3-47

Specifications

Warranted Characteristics ... 4-3
 Performance Conditions 4-3
Typical Characteristics .. 4-7
Nominal Traits ... 4-11

Theory of Operation

Logic Conventions .. 5-1
Module Overview ... 5-1
Table of Contents

Performance Verification
- Conventions .. 6-1
- Test Equipment .. 6-3
- Test Record .. 6-3
- Self Test ... 6-5
- Functional Test .. 6-7
- Performance Tests .. 6-11
 - Prerequisites .. 6-11
 - Signal Acquisition System Checks 6-11
 - Time Base System Checks 6-15
 - Trigger System Checks 6-17

Adjustment Procedures
- Adjustment ... 7-1
 - Equipment Required 7-1
 - The System Calibration Menu 7-2
 - Attenuator Adjustment 7-4
 - Monitor Adjustments 7-5

Maintenance
- Inspection and Cleaning 8-1
 - Preventing ESD ... 8-1
 - General Care ... 8-2
 - Inspection and Cleaning Procedures 8-2
- Removal and Replacement 8-7
 - Preparation — Please Read 8-7
 - Line Fuse and Line Cord 8-9
 - Front Panel Knobs and Shafts 8-11
 - Rear Cover, Cabinet, and Cabinet Handle 8-13
 - Trim Ring, Menu Elastomer, Menu Buttons, and Front EMI Gaskets .. 8-15
 - Front Panel Assembly and Menu Flex Circuit 8-17
 - Main Board Assembly 8-18
 - Monitor Assembly .. 8-20
 - Power Supply Assembly 8-22
 - Option 14 Assembly 8-24
 - Fan and Fan Mount 8-25
Table of Contents

Troubleshooting ... 8-27
Onboard Diagnostics ... 8-27
Enabling Calibration Menus 8-29
Troubleshooting Procedure 8-29
Repackaging Instructions 8-41

Electrical Parts List

Diagrams

Mechanical Parts List

Parts Ordering Information 11-1
Using the Replaceable Parts List 11-2

Glossary

Index
List of Figures

Figure 2-1: ON/STBY Button .. 2-1
Figure 2-2: Line Fuse Removal 2-2
Figure 2-3: Using Menus .. 2-4
Figure 2-4: A “Pop-Up” Menu 2-5
Figure 2-5: Connecting a Probe 2-7
Figure 2-6: Probe Compensation Setup 2-8
Figure 2-7: Compensation Waveform 2-8
Figure 2-8: How Probe Compensation Affects Signals 2-9
Figure 2-9: Location of Probe Compensation Adjustment ... 2-9
Figure 2-10: The AUTOSET Button 2-11
Figure 3-1: The TDS 320 Oscilloscope Front Panel 3-3
Figure 3-2: Primary Functions Menu Map 3-14
Figure 3-3: Secondary Functions Menu Map 3-15
Figure 3-4: The VERTICAL MENU Button 3-17
Figure 3-5: The Vertical Menu 3-18
Figure 3-6: Inverting a Waveform 3-19
Figure 3-7: The HORIZONTAL MENU Button 3-20
Figure 3-8: The Horizontal Menu 3-20
Figure 3-9: The MATH Button 3-21
Figure 3-10: A Math Waveform 3-22
Figure 3-11: The Reference Waveform Buttons 3-23
Figure 3-12: A Reference Waveform Menu 3-24
Figure 3-13: The TRIGGER MENU Button 3-25
Figure 3-14: The Edge Trigger Menu 3-26
Figure 3-15: The Video Trigger Menu 3-28
Figure 3-16: The Video Scan-Rate Menu 3-29
Figure 3-17: The MEASURE Button 3-31
Figure 3-18: The Measure Menu and Active Measurements .. 3-32
Figure 3-19: The CURSOR Button 3-36
Figure 3-20: The Cursor Menu 3-36
Figure 3-21: Paired Cursor Measurements of a Sine Wave ... 3-37
Figure 3-22: The ACQUIRE Button 3-39
Figure 3-23: The Acquire Menu 3-39
Figure 3-24: The DISPLAY Button 3-41
Figure 3-25: The Display Menu 3-41
Figure 3-26: The HARDCOPY Button 3-43
Figure 3-27: The UTILITY Button 3-43
Figure 3-28: The System I/O Menu 3-44
Figure 3-29: The SAVE/RECALL SETUP Button 3-45
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-30</td>
<td>The Save/Recall Setup Menu</td>
<td>3-45</td>
</tr>
<tr>
<td>3-31</td>
<td>The Utility Button</td>
<td>3-47</td>
</tr>
<tr>
<td>3-32</td>
<td>The Utility Pop-Up Menu</td>
<td>3-47</td>
</tr>
<tr>
<td>4-1</td>
<td>TDS 310, TDS 320, and TDS 350 Dimensions</td>
<td>4-15</td>
</tr>
<tr>
<td>5-1</td>
<td>TDS 310, TDS 320, and TDS 350 Block Diagram</td>
<td>5-2</td>
</tr>
<tr>
<td>6-1</td>
<td>Menu Locations</td>
<td>6-2</td>
</tr>
<tr>
<td>6-2</td>
<td>Verifying Adjustments and Signal Path Compensation</td>
<td>6-6</td>
</tr>
<tr>
<td>6-3</td>
<td>Hookup for Functional Test</td>
<td>6-8</td>
</tr>
<tr>
<td>6-4</td>
<td>Hookup for DC Voltage Measurement Accuracy Check</td>
<td>6-12</td>
</tr>
<tr>
<td>6-5</td>
<td>Hookup for Analog Bandwidth Check</td>
<td>6-14</td>
</tr>
<tr>
<td>6-6</td>
<td>Measuring Analog Bandwidth</td>
<td>6-15</td>
</tr>
<tr>
<td>6-7</td>
<td>Hookup for Sample Rate Check</td>
<td>6-16</td>
</tr>
<tr>
<td>6-8</td>
<td>Hookup for Trigger Sensitivity Check</td>
<td>6-18</td>
</tr>
<tr>
<td>6-9</td>
<td>Measuring Trigger Sensitivity</td>
<td>6-19</td>
</tr>
<tr>
<td>7-1</td>
<td>The System Calibration Menu</td>
<td>7-2</td>
</tr>
<tr>
<td>7-2</td>
<td>Timing Compensation Waveform</td>
<td>7-3</td>
</tr>
<tr>
<td>7-3</td>
<td>Attenuator Adjustment Setup and Locations</td>
<td>7-5</td>
</tr>
<tr>
<td>7-4</td>
<td>Monitor Adjustments</td>
<td>7-6</td>
</tr>
<tr>
<td>Figure 8-1:</td>
<td>Oscilloscope Orientation</td>
<td>8-8</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Figure 8-2:</td>
<td>Line Cord Removal</td>
<td>8-10</td>
</tr>
<tr>
<td>Figure 8-3:</td>
<td>Line Fuse Removal</td>
<td>8-11</td>
</tr>
<tr>
<td>Figure 8-4:</td>
<td>Knob and Shaft Removal</td>
<td>8-12</td>
</tr>
<tr>
<td>Figure 8-5:</td>
<td>Rear Cover, Cabinet, and Cabinet Handle and Feet Removal</td>
<td>8-14</td>
</tr>
<tr>
<td>Figure 8-6:</td>
<td>Trim Ring, Menu Elastomer, and Menu Buttons Removal</td>
<td>8-15</td>
</tr>
<tr>
<td>Figure 8-7:</td>
<td>EMI Gasket Removal and Installation</td>
<td>8-16</td>
</tr>
<tr>
<td>Figure 8-8:</td>
<td>Front Panel Assembly and Menu Flex Circuit Removal</td>
<td>8-17</td>
</tr>
<tr>
<td>Figure 8-9:</td>
<td>Main Board Removal</td>
<td>8-19</td>
</tr>
<tr>
<td>Figure 8-10:</td>
<td>Monitor Assembly Removal</td>
<td>8-21</td>
</tr>
<tr>
<td>Figure 8-11:</td>
<td>Low Voltage Power Supply Removal</td>
<td>8-23</td>
</tr>
<tr>
<td>Figure 8-12:</td>
<td>Option 14 Assembly Removal</td>
<td>8-25</td>
</tr>
<tr>
<td>Figure 8-13:</td>
<td>Fan and Fan Mount Removal</td>
<td>8-26</td>
</tr>
<tr>
<td>Figure 8-14:</td>
<td>The Diagnostics Menu</td>
<td>8-27</td>
</tr>
<tr>
<td>Figure 8-15:</td>
<td>The Error Log</td>
<td>8-28</td>
</tr>
<tr>
<td>Figure 8-16:</td>
<td>Main Board Cal Jumper</td>
<td>8-29</td>
</tr>
<tr>
<td>Figure 8-17:</td>
<td>Primary Troubleshooting Procedure</td>
<td>8-30</td>
</tr>
<tr>
<td>Figure 8-18:</td>
<td>Module Isolation Troubleshooting Procedure</td>
<td>8-31</td>
</tr>
<tr>
<td>Figure 8-19:</td>
<td>Front Panel/Processor Troubleshooting Procedure</td>
<td>8-32</td>
</tr>
<tr>
<td>Figure 8-20:</td>
<td>Monitor Troubleshooting Procedure</td>
<td>8-33</td>
</tr>
<tr>
<td>Figure 8-21:</td>
<td>J901 Pin 7 Signal</td>
<td>8-34</td>
</tr>
<tr>
<td>Figure 8-22:</td>
<td>J901 Pin 2 Signal</td>
<td>8-34</td>
</tr>
<tr>
<td>Figure 8-23:</td>
<td>J901 Pin 5 Signal</td>
<td>8-35</td>
</tr>
<tr>
<td>Figure 8-24:</td>
<td>Power Supply Troubleshooting Procedure</td>
<td>8-36</td>
</tr>
<tr>
<td>Figure 8-25:</td>
<td>Power Supply Connector Locations</td>
<td>8-38</td>
</tr>
<tr>
<td>Figure 8-26:</td>
<td>Supply Overload Troubleshooting Procedure</td>
<td>8-39</td>
</tr>
<tr>
<td>Figure 8-27:</td>
<td>I/O Interfaces Option Troubleshooting Procedure</td>
<td>8-40</td>
</tr>
<tr>
<td>Figure 11-1:</td>
<td>Cabinet and Front Panel Assembly</td>
<td>11-5</td>
</tr>
<tr>
<td>Figure 11-2:</td>
<td>CRT, Power Supply, and Circuit Boards</td>
<td>11-9</td>
</tr>
<tr>
<td>Figure 11-3:</td>
<td>Accessories</td>
<td>11-10</td>
</tr>
</tbody>
</table>
List of Tables

Table 1-1: VGA Output Connector Pins ... 1-3
Table 1-2: International Power Cords ... 1-3
Table 1-3: Standard Accessories .. 1-5
Table 1-4: Optional Accessories ... 1-5
Table 1-6: Accessory Cables ... 1-6
Table 2-1: Autoset Defaults ... 2-11
Table 3-1: Measurement Definitions .. 3-33
Table 4-1: Warranted Characteristics — Signal Acquisition System . 4-3
Table 4-2: Warranted Characteristics — Time Base System 4-4
Table 4-3: Warranted Characteristics — Triggering System 4-5
Table 4-4: Power Requirements .. 4-6
Table 4-5: Warranted Characteristics — Environmental, Safety, and Reliability .. 4-6
Table 4-6: Typical Characteristics — Signal Acquisition System 4-7
Table 4-7: Typical Characteristics — Triggering System 4-8
Table 4-8: Typical Characteristics — Probe Compensator Output ... 4-8
Table 4-9: Typical Characteristics — Data Handling 4-9
Table 4-10: Nominal Traits — Signal Acquisition System 4-11
Table 4-11: Nominal Traits — Time Base System 4-12
Table 4-12: Nominal Traits — Triggering System 4-12
Table 4-13: Nominal Traits — Display System 4-12
Table 4-14: Nominal Traits — I/O Interface Option 4-13
Table 4-15: Nominal Traits — Power Distribution System 4-13
Table 4-16: Nominal Traits — Safety Characteristics 4-13
Table 4-17: Nominal Traits — Mechanical Characteristics 4-14
Table 6-1: Test Equipment .. 6-3
Table 6-2: DC Accuracy ... 6-12
Table 7-1: Adjustment Equipment ... 7-1
Table 8-1: External Inspection Check List 8-3
Table 8-2: Internal Inspection Check List 8-4
Table 8-3: Tools Required for Module Removal 8-8
Table 8-4: Power Supply Secondary Voltages 8-37
List of Tables
Safety Summary

Please take a moment to review these safety precautions. They are provided for your protection and to prevent damage to the oscilloscope. This safety information applies to all operators and service personnel.

Symbols and Terms

These two terms appear in manuals:

- **CAUTION** statements identify conditions or practices that could result in damage to the equipment or other property.

- **WARNING** statements identify conditions or practices that could result in personal injury or loss of life.

These two terms appear on equipment:

- **CAUTION** indicates a personal injury hazard not immediately accessible as one reads the marking, or a hazard to property including the equipment itself.

- **DANGER** indicates a personal injury hazard immediately accessible as one reads the marking.

This symbol appears in manuals:

![Static-Sensitive Devices](image)

These symbols appear on equipment:

- **DANGER** High Voltage

- **Protective** ground (earth) terminal

- **ATTENTION** Refer to manual
Specific Precautions

Observe all the following precautions to ensure your personal safety and to prevent damage to either the oscilloscope or equipment connected to it.

Power Source

The oscilloscope operates from a power source that will not apply more than 250 V_RMS between the supply conductors or between either supply conductor and ground. A protective ground connection, through the grounding conductor in the power cord, is essential for safe system operation.

Grounding the Oscilloscope

The oscilloscope is grounded through the power cord. To avoid electric shock, plug the power cord into a properly wired receptacle with an earth ground connection. Do this before making connections to the input or output terminals of the oscilloscope.

Without the protective ground connection, all parts of the oscilloscope are potential shock hazards. This includes knobs and controls that may appear to be insulators.

Use the Proper Power Cord

Use only the power cord and connector specified for your product. Use only a power cord that is in good condition.

Use the Proper Fuse

To avoid fire hazard, use only a fuse that meets all type, voltage, and current specifications on page 2-1.

Do Not Remove Covers or Panels

To avoid personal injury, do not operate the oscilloscope without the panels or covers.

Do Not Operate in Explosive Atmospheres

The oscilloscope provides no explosion protection from static discharges or arcing components. Do not operate the oscilloscope in an atmosphere of explosive gasses.

Electric Overload

Never apply a voltage to a connector on the oscilloscope that is outside the range specified for that connector.
Service Safety Summary

Only qualified personnel should perform service procedures. This safety information applies to all service personnel.

Do Not Perform Service While Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

Dangerous voltages exist at several points in this product. To avoid personal injury, do not touch exposed connections or components while power is on. Disconnect power before removing protective panels, soldering, or replacing components.

Disconnect Power

To avoid electric shock, disconnect the main power by means of the power cord or, if provided, the power switch.

Use Caution When Servicing the CRT

To avoid electric shock or injury, use extreme caution when handling the CRT. Only qualified personnel familiar with CRT servicing procedures and precautions should remove or install the CRT.

CRTs retain hazardous voltages for long periods of time after power is turned off. Before attempting any servicing, discharge the CRT by shorting the anode to chassis ground. When discharging the CRT, connect the discharge path to ground and then the anode. Rough handling may cause the CRT to implode. Do not nick or scratch the glass or subject it to undue pressure when removing or installing it. When handling the CRT, wear safety goggles and heavy gloves for protection.

X-Radiation

To avoid x-radiation exposure, do not modify or otherwise alter the high-voltage circuitry or the CRT enclosure. X-ray emissions generated within this product have been sufficiently shielded.
Preface

The Instruction Manual for the TDS 310, TDS 320, and TDS 350 Two Channel Oscilloscopes provides both user and module-level service information.

The following sections are for users.

- **Introduction** contains a brief product description and an options and accessories list.
- **Getting Started** contains installation, user interface, probe, and autoset information.
- **Operation** contains front panel, rear panel, and menu maps, as well as task-oriented descriptions of oscilloscope features. The descriptions are ordered from least to most complex.
- **Specifications** contains typical, nominal, and warranted specifications for the TDS 310, TDS 320, and TDS 350 Two Channel Oscilloscopes.

The following sections are for qualified service personnel only.

- **Theory of Operation** provides a module-level description of oscilloscope circuitry.
- **Performance Verification** contains procedures you can use to verify that TDS 310, TDS 320, and TDS 350 Two Channel Oscilloscopes are operating within warranted specifications.
- **Adjustment** contains procedures you can use to make internal adjustments after servicing your instrument or moving it to a new operating environment.
- **Maintenance** contains procedures for inspecting and cleaning, troubleshooting, and removing and replacing faulty modules.
- **Parts List** contains a module-level parts list for the TDS 310, TDS 320, and TDS 350.

The following sections are for all users.

- **Glossary** contains a glossary of terms.
- **Index** contains a full index.

NOTE

If you are a novice oscilloscope user, you should read the XYZs of Analog and Digital Oscilloscopes before using this manual.
Related Manuals

These other manuals are available for the TDS 310, TDS 320, and TDS 350 Two Channel Oscilloscopes.

- The Reference gives you a quick overview of how to operate your oscilloscope.
- *The XYZ’s of Analog and Digital Oscilloscopes* provides introductory instruction on basic oscilloscope theory.
- The Programmer Manual provides complete information on programming and remote control of the TDS 310, TDS 320, and TDS 350 Two Channel Oscilloscopes through the Option 14 Communications Board.
Introduction
Tektronix TDS 310, TDS 320, and TDS 350 two channel oscilloscopes are digital signal processors and are superb tools for displaying and measuring waveforms. Their performance addresses the needs of both benchtop lab and portable applications with the following features.

- Two input channels, each with a record length of 1,000 samples and 8-bit vertical resolution. Both channels acquire waveforms simultaneously.
- 1 Gigasample/second maximum sample rate (TDS 350); 500 Megasamples/second maximum sample rate (TDS 320); 200 Megasamples/second maximum sample rate (TDS 310).
- 200 MHz analog bandwidth and fastest time base setting of 2.5 ns/div (TDS 350); 100 MHz analog bandwidth and fastest time base setting of 5 ns/div (TDS 320); 50 MHz analog bandwidth and fastest time base setting of 10 ns/div (TDS 310).
- A full complement of advanced functions including on-screen readout, AUTOSET, cursors, and continuously-updated automatic measurements.
- Waveform averaging, waveform enveloping, and hardware peak detection.
- A unique graphical user interface (GUI) and a logical front-panel layout which combine to deliver the standard in usability pioneered by the TDS family of oscilloscopes.
Options and Accessories

This section describes the various options as well as the standard and optional accessories that are available for the TDS 310, TDS 320, and TDS 350.

Options

Options include the following.

Option 14: I/O Interfaces

This option includes GPIB, RS-232, and Centronics interfaces, VGA video output, and power for the Option 3P printer. It also includes the TDS 310, 320 & 350 Programmer Manual.

You can connect a remote display to the VGA 9-pin D connector on the rear panel. Table 1-6 on page 1-6 gives the part number of a properly shielded cable that is commercially available.

Because display manufacturers use different pin combinations and connectors, you may find the information in Table 1-1 helpful.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Video (monochrome analog)</td>
</tr>
<tr>
<td>4</td>
<td>Horizontal sync @ 31.5 kHz (VGA rate)</td>
</tr>
<tr>
<td>5</td>
<td>Vertical sync</td>
</tr>
<tr>
<td>6, 7, 8</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Options A1 – A5: International Power Cords

Besides the standard North American, 110 V, 60 Hz power cord, Tektronix ships any of five alternate power cord configurations with the oscilloscope when ordered by the customer (see Table 1-2).

<table>
<thead>
<tr>
<th>Option</th>
<th>Power Cord</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Universal European — 220 V, 50 Hz</td>
</tr>
<tr>
<td>A2</td>
<td>UK — 240 V, 50 Hz</td>
</tr>
<tr>
<td>A3</td>
<td>Australian — 240 V, 50 Hz</td>
</tr>
<tr>
<td>A4</td>
<td>North American — 240 V, 60 Hz</td>
</tr>
</tbody>
</table>
Table 1-2: International Power Cords (Cont.)

<table>
<thead>
<tr>
<th>Option</th>
<th>Power Cord</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>Switzerland — 220 V, 50 Hz</td>
</tr>
</tbody>
</table>

Option 1K: K212 Scope Cart

With this option, the oscilloscope comes with a K212 Portable Instrument Cart.

Option 3P: Thermal Printer (Includes Option 14)

The instrument comes with a thermal printer connected to the Centronics port. Also included are a carrying pouch that fastens to the top of the oscilloscope and printer instructions.

Option 9C: Certificate of Calibration and Test Data Report

Tektronix ships a Certificate of Calibration that states this instrument meets or exceeds all warranted specifications and has been calibrated using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology, an accepted value of a natural physical constant or a ratio calibration technique. The calibration is in compliance with US MIL-STD-45662A. This option also includes a test data report for the instrument.

Warranty-Plus Service Options

The following options add to the services available with the standard warranty. (The standard warranty appears immediately following the title page in this manual.)

- **Option M2**: Tektronix provides three years of warranty plus two years remedial service.

- **Option M3**: Tektronix provides three years of warranty plus two years remedial service and four oscilloscope calibrations.

- **Option M8**: Tektronix provides four calibrations and four performance verifications, one of each in the second through the fifth years of service.
Standard Accessories

The standard accessories listed in Table 1-3 come with the TDS 310, TDS 320, and TDS 350.

Table 1-3: Standard Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Instruction Manual</td>
<td></td>
</tr>
<tr>
<td>XYZs of Analog and Digital Oscilloscopes</td>
<td></td>
</tr>
<tr>
<td>U.S. Power Cord</td>
<td></td>
</tr>
<tr>
<td>Probes (quantity two) P6109B 10X Passive (TDS 310 and TDS 320)</td>
<td></td>
</tr>
<tr>
<td>Probes (quantity two) P6111B 10X Passive (TDS 350)</td>
<td></td>
</tr>
</tbody>
</table>

Optional Accessories

You can order the optional accessories listed in Table 1-4.

Table 1-4: Optional Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope Camera</td>
<td>C-9, Option 4, (includes Adapter Hood 016–1154–XX)</td>
</tr>
<tr>
<td>Oscilloscope Cart</td>
<td>K212</td>
</tr>
<tr>
<td>Rackmount Kit (for field conversion)</td>
<td>016–1166–XX</td>
</tr>
<tr>
<td>Soft-Sided Carrying Case</td>
<td>016–1158–XX</td>
</tr>
<tr>
<td>Carrying Case</td>
<td>016–0792–XX</td>
</tr>
<tr>
<td>Deluxe Transit Case</td>
<td>016–1157–XX</td>
</tr>
<tr>
<td>Front Cover</td>
<td>200–3232–XX</td>
</tr>
<tr>
<td>Accessories Pouch</td>
<td>016–1159–XX</td>
</tr>
<tr>
<td>I/O Interface Field Upgrade Kit</td>
<td>TD3F14A</td>
</tr>
<tr>
<td>Time Interval to Voltage Converter (requires TM500/5000 mainframe)</td>
<td>TVC501</td>
</tr>
<tr>
<td>Docuwave waveform capture utility software for the PC</td>
<td>S60 DWAV</td>
</tr>
<tr>
<td>Printer, bubble-jet, 360 dpi, 83 cps, plain paper</td>
<td>HC 220</td>
</tr>
<tr>
<td>Instruction Manual</td>
<td>French 070–8070–XX</td>
</tr>
<tr>
<td></td>
<td>German 070–8071–XX</td>
</tr>
<tr>
<td></td>
<td>Spanish 070–8819–XX</td>
</tr>
</tbody>
</table>
Accessory Probes

These are other types of probes you can use with the TDS 310, TDS 320, and TDS 350. You can order the following probes separately:

- P6101B 1X Passive Probe
- P6129B Switchable 1X–10X Passive Probe (not recommended for the TDS 350)
- P6408 TTL Logic Probe
- P6009 High Voltage Probe
- AM503S DC/AC Current Probe System
- P6561 SMT Probe

Accessory Cables

Table 1-5 lists cables you can use with the TDS 310, TDS 320, and TDS 350. You can order them separately.

<table>
<thead>
<tr>
<th>Software</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIB, 1 meter (3.3 feet)</td>
<td>012–0991–01</td>
</tr>
<tr>
<td>GPIB, 2 meter (6.6 feet)</td>
<td>012–0991–00</td>
</tr>
<tr>
<td>RS-232, 9-pin female to 9-pin female connectors, null modem, 76 inch</td>
<td>012–1379–XX</td>
</tr>
<tr>
<td>(for AT style computers)</td>
<td></td>
</tr>
<tr>
<td>RS-232, 9-pin female to 25-pin female connectors, null modem, 76 inch</td>
<td>012–1380–XX</td>
</tr>
<tr>
<td>(for PC style computers)</td>
<td></td>
</tr>
<tr>
<td>RS-232, 9-pin female to 25-pin male connectors, null modem, 9 feet</td>
<td>012–1298–XX</td>
</tr>
<tr>
<td>(for serial interface printers)</td>
<td></td>
</tr>
<tr>
<td>RS-232, 9-pin female to 25-pin male connectors, 15 feet</td>
<td>012–1241–XX</td>
</tr>
<tr>
<td>(for modems)</td>
<td></td>
</tr>
<tr>
<td>Centronics, 25-pin male to 36-pin Centronics, 2.4 meter (8 feet)</td>
<td>012–1214–XX</td>
</tr>
<tr>
<td>(for parallel printer interfaces)</td>
<td></td>
</tr>
<tr>
<td>NEC® VGA video cable. (Use an appropriate adapter when other than a</td>
<td>73893029</td>
</tr>
<tr>
<td>9-pin monitor connection is needed.)</td>
<td></td>
</tr>
</tbody>
</table>
Getting Started
Start Up

To properly install and power on the oscilloscope, perform this procedure.

1. Check that you have the proper electrical connections. The rear label lists power requirements for all possible voltage inputs.

2. Check the fuse to be sure it is the proper type and rating (Figure 2-2). TDS 300 Series oscilloscopes are shipped with a UL-approved fuse installed.

 Fuse specifications are as follows.

 IEC 127: 5 by 20 mm, time-lag, 3.15 A, 250 V
 UL198 G/CSA: 5 by 20 mm, time-lag, 3 A, 250 V

3. Connect the proper power cord from the rear-panel power connector (Figure 2-2) to the power system. Use the power cord clamp to secure the cord to the rear panel.

4. Leave space for cooling. Do this by verifying that the air-intake and exhaust holes on the sides and bottom of the cabinet (where the fan operates) are free of any airflow obstructions. Leave at least 5.1 cm (2 in) free on each side.

5. Press the **ON/STBY** button to power-up the oscilloscope.

![Figure 2-1: ON/STBY Button](image)
Line Fuse Replacement

WARNING

To avoid injury or death, unplug the line cord from the line voltage power source before continuing.

1. Have handy a flat-bladed screwdriver (Item 4).
2. Set the oscilloscope so its bottom is down on the work surface and its rear is facing you.
3. Find the line cord on the rear cover. (See Figure 2-2.) Unplug the line cord from its receptacle.
4. Find the fuse drawer beneath the line voltage plug on the rear panel. Now, pry open the drawer with a small flat-bladed screwdriver (Item 4), and remove the line fuse. (See Figure 2-2.)

![Diagram of line fuse replacement]

Figure 2-2: Line Fuse Removal

5. **Reinstallation:** Do in reverse steps 6 through 3 to reinstall the line fuse and then the line cord.
Understanding the User Interface

TDS 300 Series oscilloscopes use the TDS Series intuitive user interface. This interface reduces front panel clutter while allowing easy access to specialized functions through the menu structure.

The following procedure illustrates how to navigate in the menu structure. If you are a beginner, you may want to run through it several times to get a feel for how you can access functions and subfunctions. Refer to Figure 2-3 as necessary.
Understanding the User Interface

1. Press any of the front panel menu buttons

2. Select an item from the main (bottom) menu or use leftmost button to “pop up” selections.

3. Select an item from the side menu, if displayed

4. Adjust menu item values with general purpose knob

Figure 2-3: Using Menus

1. Push one of the indicated front-panel buttons to call up a menu of functions. This first menu is the main menu. Sometimes the main menu will be a side menu (step 3), but most main menus are bottom menus.
2. Push a bottom menu button to select a function. One of three things will happen.
 - If the function has no subfunctions, it becomes active. If it is a variable function, you can now use the General Purpose Knob to adjust it (step 4).
 - If the function has subfunctions, they appear on the side menu (step 3).
 - The leftmost bottom menu button sometimes activates a special “pop-up” menu (as shown in Figure 2-4). You can cycle through the pop-up menu options by repeatedly pressing the button. Each selection calls up different bottom and side menus.

![Figure 2-4: A “Pop-Up” Menu](image)

3. Push a side menu button to select a subfunction.
4. Use the General Purpose Knob to alter variable function or subfunction settings.
5. Press the CLEAR MENU button to remove a menu from the screen.
Understanding the User Interface
Using the Probes

The TDS 310, TDS 320, and TDS 350 come with two standard accessory probes. Use these probes to conduct test signals to the oscilloscope. For detailed probe specifications and instructions, see the instruction manual packaged with the probe.

Connecting a Probe

To connect a probe to the oscilloscope, attach the BNC end of the probe to either the CH 1 or CH 2 input. Be sure to twist the probe end clockwise until the BNC is fully locked. See Figure 2-5.

Compensating a Probe

Use the following procedure to compensate the probe every time you set up your oscilloscope.

1. Attach the probe BNC connector to the CH 1 input and attach the probe tip to the PROBE COMP output signal, as shown in Figure 2-6. Attach the probe ground clip to the outer ring of the CH 2 BNC.
Using the Probes

2. Press **AUTOSET**. The oscilloscope displays the compensation waveform. It should resemble the waveform shown in Figure 2-7.

![Figure 2-6: Probe Compensation Setup](image1)

![Figure 2-7: Compensation Waveform](image2)
3. Check that the waveform indicates correct compensation (see Figure 2-8). If the waveform indicates over or undercompensation, use the alignment tool provided with the probe to adjust the compensation as shown in Figure 2-9.

![Probe Compensated Correctly](image1)

![Probe Overcompensated](image2)

![Probe Undercompensated](image3)

Figure 2-8: How Probe Compensation Affects Signals

![Compensation Adjustment](image4)

Figure 2-9: Location of Probe Compensation Adjustment
Using the Probes
Using Autoset

The TDS 300 Series autoset feature produces a stable, triggered display of almost any input signal. To use autoset, connect a signal to either the CH 1 or CH 2 input connector and press the AUTOSET button (shown in Figure 2-10).

![Image of the AUTOSET button](image)

Figure 2-10: The AUTOSET Button

Table 2-1 specifies the changes autoset makes in your instrument setup.

<table>
<thead>
<tr>
<th>Control</th>
<th>Changed by Autoset to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected channel</td>
<td>If none already displayed, numerically lowest of the displayed channels</td>
</tr>
<tr>
<td>Acquire Mode</td>
<td>Sample</td>
</tr>
<tr>
<td>Acquire Stop After</td>
<td>RUN/STOP button only</td>
</tr>
<tr>
<td>Display Style</td>
<td>Vectors</td>
</tr>
<tr>
<td>Display Intensity — Overall</td>
<td>If less than 50%, set to 75%</td>
</tr>
<tr>
<td>Display Format</td>
<td>YT</td>
</tr>
<tr>
<td>Horizontal Position</td>
<td>Centered within the graticule window</td>
</tr>
<tr>
<td>Horizontal Scale</td>
<td>As determined by the signal frequency</td>
</tr>
<tr>
<td>Horizontal Time Base</td>
<td>Main Only</td>
</tr>
<tr>
<td>Trigger Position</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Trigger Type</td>
<td>Edge</td>
</tr>
<tr>
<td>Trigger Source</td>
<td>Numerically lowest of the displayed channels (the selected channel)</td>
</tr>
<tr>
<td>Control</td>
<td>Changed by Autoset to</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Trigger Level</td>
<td>Midpoint of data for the trigger source</td>
</tr>
<tr>
<td>Trigger Slope</td>
<td>Positive</td>
</tr>
<tr>
<td>Trigger Coupling</td>
<td>DC</td>
</tr>
<tr>
<td>Trigger Holdoff</td>
<td>500 ns</td>
</tr>
<tr>
<td>Vertical Scale</td>
<td>As determined by the signal level</td>
</tr>
<tr>
<td>Vertical Coupling</td>
<td>DC unless AC was previously set; AC remains unchanged</td>
</tr>
<tr>
<td>Vertical Bandwidth</td>
<td>Full</td>
</tr>
<tr>
<td>Vertical Offset</td>
<td>0 volts</td>
</tr>
</tbody>
</table>
Operation
Operation

This section describes how to operate your TDS 300 Series oscilloscope. It begins with three instrument-descriptive sections that cover all controls, inputs, and menus.

It then continues on to various task descriptions. The tasks are in a functional order, starting with the most basic (Manipulating Waveforms) and then moving to the more specialized (Making Hardcopies).
TDS 300 Series oscilloscopes are simple to use. To reduce the clutter of knobs and buttons on the front panel (see Figure 3-1), many instrument control functions are menu driven. Use menus to access instrument functions that you typically set once before making measurements. Use knobs or buttons to control instrument functions that you most often adjust during measurements.

Figure 3-1: The TDS 320 Oscilloscope Front Panel

The menus are easy to use. For example, to make a change to the vertical operating system, press the VERTICAL MENU button to display the menu choices.

This section illustrates each control and connector and contains brief descriptions of its use or function.
Display and Power Controls

The ON/STBY button toggles instrument power.

The Side Menu buttons provide access to side menu selections. See page 2-3 for more information on the user interface.

The Main Menu buttons provide access to main menu selections. See page 2-3 for more information on the user interface.

The CLEAR MENU button clears all menus from the screen.
Vertical Controls

The Waveform Select buttons display and select waveforms (CH1, CH2, MATH, REF1, and REF2). A light next to a button illuminates when that waveform is selected.

The Vertical POSITION knob controls the vertical position of the presently selected waveform.

The VERTICAL MENU button calls up the vertical operations menu. For more information on vertical operations, see page 3-17.

The VOLTS/DIV knob controls the vertical scale of the presently selected waveform.

The WAVEFORM OFF button turns off the presently selected waveform.

Connector to chassis ground.

Probe compensation output. See page 2-7 for instructions on how to compensate the probes.
Horizontal Controls

- **HORIZONTAL POSITION** knob controls the horizontal position of all waveforms.

- **HORIZONTAL MENU** button calls up the horizontal operations menu. For more information on horizontal operations see page 3-20.

- **SEC/DIV** knob controls the horizontal scale of the active waveforms.
Trigger Controls

The Trigger Status Lights indicate the status of the triggering system. The TRIG'D light illuminates when the instrument recognizes a valid trigger.

The READY light illuminates when the instrument can accept a valid trigger and is waiting for that event to occur.

The Trigger LEVEL knob controls the trigger.

The TRIGGER MENU button calls up the trigger menu. See page 3-25 for more information on triggering.

The SET LEVEL TO 50% button sets the trigger level at the half-way point between the peaks of the trigger signal.

The FORCE TRIGGER button forces the oscilloscope to start acquiring a waveform regardless of whether a trigger event occurs. This button has no effect if the acquisition system is stopped.
Miscellaneous Controls

The MEASURE button calls up the automated measurements menu. See page 3-31 for more information on automated measurements.

The UTILITY button calls up the utility menu. See page 3-47 for more information on utilities.

The AUTOSET button automatically sets up the instrument to produce a usable display of the input signals. For more on the autoset function, see page 2-11.

The RUN/STOP button starts and stops acquisition.

The HARDCOPY button starts print operations. See page 3-43 for more information on making hard copies.

The ACQUIRE button calls up the acquisition menu. See page 3-39 for more information on controlling acquisition.

The General Purpose Knob controls many side menu functions, including the cursors. The TOGGLE button switches control from cursor to cursor.

The SAVE/RECALL SETUP button calls up the save/recall setup menu. See page 3-45 for more information on saving and recalling setups.

The CURSOR button calls up the cursor menu. See page 3-35 for information on making measurements with cursors.

The DISPLAY button calls up the display menu. See page 3-41 for information on controlling the display.
Display Map

The Status Readouts show trigger status (stopped, waiting for trigger, etc.) and acquisition status (mode and sampling rate or number of acquisitions).

Trigger position (T).

The value entered with the general purpose knob.

When the general purpose knob is first assigned, the knob icon appears here.

Indicates position of vertical bar cursors in the waveform record.

The waveform record icon.

Shows what part of the waveform record is displayed.

Cursor measurement readouts. See page 3-35 for more information on cursors.

The side menu offers a choice of specific actions.

The Trigger Readout shows the trigger source and level and whether the instrument is triggered on the rising or falling edge of the waveform.

When in video trigger mode, the readout displays source and trigger feature (Field 1, Field 2, or Lines).

The Channel Readout shows the VOLTS/DIV of all active channels.

The main menu offers a choice of major actions.

The Time Base Readout shows the time base setting. M indicates (M)ain time base, D indicates (D)elayed time base.
Inputs

The channel BNC inputs (CH1 and CH2) accept electrical signals for display.

The EXT TRIG input accepts external trigger signals. See page 3-26 for more information on external triggering.
The Option 14 Panel (Option 14 instruments only) allows access to three communications interfaces: a Centronics parallel port, an RS-232 interface, and a GPIB interface. It also includes a VGA video compatible output port and a power connector for the Option 3P printer.

You can use the Centronics, RS-232, and GPIB interfaces to transmit hardcopy data; see page 3-43 for hardcopy procedures.

You can use the GPIB and RS-232 interfaces to operate and program the oscilloscope from a GPIB controller; see the TDS 310, 320, & 350 Programmer Manual for more information.

The power connector accepts line voltage to power the instrument. See page 1-3 for a list of power cord and connector options.

The fuse drawer holds the line fuse. See page 8-9 for fuse replacement procedures.
Rear Panel
Menu Maps

Most TDS 310, TDS 320, and TDS 350 features are menu driven. This section contains two menu maps: one of the primary functions (vertical, horizontal, and triggering functions) and one of the secondary functions (acquisition functions, utilities, and so on).
Figure 3-2: Primary Functions Menu Map
Figure 3-3: Secondary Functions Menu Map
Manipulating Waveforms

There are four basic ways to manipulate waveforms with TDS 300 Series oscilloscopes.

- You can change their display parameters with the vertical and horizontal systems
- You can add, subtract, and multiply them with the waveform math feature
- You can save them to and recall them from reference waveform memories

Vertical Operations

To access the vertical system features, press the VERTICAL MENU button, shown in Figure 3-4.

NOTE

The VERTICAL MENU button calls up the vertical menu only if a channel waveform (CH 1 or CH 2) is selected. If a math or reference waveform is selected, the VERTICAL MENU button calls up the math or reference waveform menu.

![Vertical Menu](image)

Figure 3-4: The VERTICAL MENU Button

Figure 3-5 shows the vertical menu.
Use the vertical menu to perform these tasks.

Select Input Coupling — Press the main menu button **Coupling**. Use the side menu to select **DC**, **AC**, or ground (**GND**) coupling.

Invert a Waveform — Press the main menu button **Invert**. Use the side menu to turn invert off and on. When you turn invert on, the selected waveform “flips” around the zero volt axis. Figure 3-6 shows an inverted pulse signal.

NOTE

Invert “flips” the waveform, but it does not alter the trigger level accordingly. To obtain a stable trigger after inverting a waveform, press **SET LEVEL TO 50%**.
Select Bandwidth — Press the main menu button Bandwidth. Use the side menu to switch between 20 MHz and full bandwidth.

Make Fine V/div Adjustments — Press the main menu button Fine Scale to activate the General Purpose Knob. Then use the knob to make precise adjustments to the vertical scale setting.

Adjust Vertical Position — Press the main menu button Position to activate the General Purpose Knob. Then, use the knob to adjust vertical position or use the side menu to set the vertical position to 0 divisions. Vertical position is limited to a range of ±5 divisions.

NOTE

This selection performs the same function as the vertical POSITION knob.

Adjust Vertical Offset — Press the main menu button Offset to activate the General Purpose Knob. Then use the knob to adjust offset or use the side menu to set the offset to 0 V. Offset performs the same basic function as the vertical POSITION knob, but it has a wider range. Use offset to view a waveform that has a large DC bias.
Horizontal Operations

To access horizontal system features, press the HORIZONTAL MENU button, shown in Figure 3-7. Figure 3-8 shows the horizontal menu.

![Figure 3-7: The HORIZONTAL MENU Button](image)

![Figure 3-8: The Horizontal Menu](image)

Use the horizontal menu to perform these tasks.
Select the Time Base — Press the main menu button Time Base. Use the side menu to select from these options.

- Press Main Only to show only the main time base.
- Press Intensified to show both the main and delayed time bases. The oscilloscope intensifies a portion of the waveform; this intensified zone indicates the location of the delayed time base with respect to the main. Use the SEC/DIV knob to change the length of the zone and the General Purpose Knob to change its position.
- Press Delayed Only to show only the delayed time base.
- Use the General Purpose Knob to adjust the delay time (the interval between the main and delayed time bases). You adjust the delay time in coarse increments when Main Only or Intensified are selected and in fine increments when Delayed Only is selected. The side menu selection Delayed Runs After Main shows the delay time.
- Press SET to Min to set the delay time to its minimum value.

Adjust Horizontal Trigger Position — Press the main menu button Trigger Position. Use the General Purpose Knob to adjust horizontal trigger position, or use side menu selections to set the trigger position to 10%, 50%, or 90% of the waveform record.

Displaying Math Waveforms

TDS 300 Series oscilloscopes can add or multiply the two channel waveforms or subtract one from the other and display the result as a math waveform. To activate the math waveform, press the MATH button, shown in Figure 3-9.
Manipulating Waveforms

Then select a formula from the side menu (Ch1 + Ch2, Ch1 – Ch2, Ch2 – Ch1, or CH1 * CH2). Figure 3-10 shows a square wave on Channel 2 added to a sine wave on Channel 1.

![Figure 3-10: A Math Waveform](image)

Saving and Recalling Waveforms

TDS 300 Series oscilloscopes have two reference waveforms. You can use the reference waveforms to store "live" waveforms (channel and math waveforms). You can also shift a stored waveform from one reference waveform to the other.

Reference waveforms respond just like live waveforms to changes in vertical position and scale, but they do not respond to horizontal scale adjustments. There is no way to horizontally expand a reference waveform.

To save a live waveform to a reference waveform, press one of the reference waveform buttons (REF 1 or REF 2) shown in Figure 3-11.
If the selected reference waveform already holds a waveform, it appears on the screen. A side menu also appears; select one of these options from the side menu (see Figure 3-12).

- Press **Save CH1 to Ref(x)** to save the channel 1 waveform to the selected reference waveform.

- Press **Save CH2 to Ref(x)** to save the channel 2 waveform to the selected reference waveform.

- Press **Save MATH to Ref(x)** to save the math waveform to the selected reference waveform.

- Press **Save Ref(y) to Ref(x)** to save the unselected reference waveform to the selected reference waveform. (For example, Ref2 to Ref1 or Ref1 to Ref2.)

- Press **Horizontal Position** to toggle between the Lock and Independent modes. In Lock mode, the horizontal position of the selected reference waveform is locked to the live waveforms. In Independent mode, the selected reference waveform is independently positionable.

NOTE

If you save a waveform to a “full” reference waveform, its previous contents will be overwritten.
Manipulating Waveforms

Figure 3-12: A Reference Waveform Menu

The reference waveforms maintain their contents indefinitely, regardless of the power state or setup of the instrument. To remove a selected reference waveform from the display, press **WAVEFORM OFF**. To recall a reference waveform simply press its front panel button (REF 1 or REF 2).
Triggering

TDS 300 Series oscilloscopes have two triggers: a standard edge trigger and a video trigger. To access trigger settings and features, press the TRIGGER MENU button, shown in Figure 3-13.

![Trigger Menu Diagram]

Figure 3-13: The TRIGGER MENU Button

This button calls up one of two menus: the edge trigger menu or the video trigger menu. Press the leftmost main menu button to switch between the two trigger menus.

Edge Triggering

The edge trigger triggers on the rising or falling edge of the input signal. You can access edge trigger settings through the edge trigger menu, shown in Figure 3-14. Be sure the leftmost main menu selection indicates Type Edge.
Figure 3-14: The Edge Trigger Menu

Use the edge trigger menu to perform these tasks.

Select the Trigger Source — Press the main menu button Source. Use the side menu to select from these options.

- Press Ch1 or Ch2 to set the trigger source to one of the input channels.
- Press Ext or Ext/10 to set the trigger source to the EXT TRIG input on the front panel. Ext/10 attenuates the external input signal by a factor of ten. Note that while the instrument can trigger on external trigger signals, it cannot display them.
- Press AC to set the trigger source to the oscilloscope line voltage signal.

Select Trigger Coupling — Press the main menu button Coupling. Use the side menu to select from these options.

- Press DC to select DC coupling.
- Press AC to select AC coupling.
- Press HF Reject to select high frequency reject mode. High frequency rejection removes the high frequency portion of the triggering signal. This allows only the low frequency components to pass on to the triggering system. High frequency reject mode attenuates signals above 30 kHz.
- Press LF Reject to select low frequency reject mode. Low frequency rejection is the opposite of high frequency rejection. Low frequency reject mode attenuates signals below 80 kHz.
- Press **Noise Reject** to select noise reject mode. Noise rejection provides DC low sensitivity, but it requires additional signal amplitude for stable triggering.

Change Trigger Slope — Press the main menu button **Slope**. Use the top two side menu buttons to switch between positive-going and negative-going slope.

Adjust Trigger Level — Press the main menu button **Level**. Use the side menu to select from these options.

- Use the **General Purpose Knob** to adjust trigger level. (Note that this selection performs the same function as the trigger **LEVEL** knob on the front panel.)
- Press **Set to TTL** to automatically set the trigger level to the TTL switching threshold.
- Press **Set to ECL** to automatically set the trigger level to the ECL switching threshold.
- Press **Set to 50%** to set the trigger level to the midpoint of the trigger source signal. (Note that this selection performs the same function as the **SET LEVEL TO 50%** button on the front panel.)

Select Trigger Mode — Press the main menu button **Mode**. Use the side menu to select either **Auto** or **Normal** mode.

In normal trigger mode, the oscilloscope waits for a valid trigger from the trigger signal source. In auto trigger mode, the oscilloscope produces an internal trigger in the absence of other trigger events.

At horizontal scale settings of 100 ms per division and slower, auto trigger mode switches to an untriggered roll display. When the display is in "roll" mode the envelope and average acquisition modes does not work properly, and the display does not show a trigger “T” on the waveform.

Adjust Holdoff — Press the main menu button **Holdoff** to activate the **General Purpose Knob**. Use the knob to adjust holdoff; the TDS 300 Series have a holdoff range of 500 ns to 10 s. Press the side menu button **Set to Min** to quickly set the holdoff to 500 ns.
Video Triggering

The video trigger triggers on field 1, field 2, any field, or lines of an NTSC or PAL standard video signal. It can also trigger on nonstandard video signals with similar sync signals. You can access video trigger settings through the video trigger menu, shown in Figure 3-15.

Use the video trigger menu to perform these tasks.

Select Trigger Source, Mode, and Holdoff — These main menu selections perform exactly as in the edge trigger menu, because the two triggers share these parameters. For example, if you set the edge trigger holdoff to 2.3 ms and then switch to the video trigger, its holdoff will also be 2.3 ms.

Select Trigger Point — Press the main menu button Trigger On to select the part of the video signal on which the oscilloscope will trigger. Use the side menu to select from these options.

- Press Field 1 to trigger on field 1 of the video signal.
- Press Field 2 to trigger on field 2 of the video signal.
- Press Any Field to trigger on any field of the video signal.
- Press Lines to trigger on all lines of the video signal.

The video trigger can only trigger on negative-going sync. If you need to trigger on the positive-going sync of a signal, simply invert the signal from the vertical menu (see page 3-18).
Select Scan Rate — Press the main menu button Scan Rate to select the scan rate frequency range. Use the side menu to select from the following rates (see Figure 3-16):

- Press Rate 1 to select a scan rate of 15 to 20 kHz.
- Press Rate 2 to select a scan rate of 20 to 25 kHz.
- Press Rate 3 to select a scan rate of 25 to 35 kHz.
- Press Rate 4 to select a scan rate of 35 to 50 kHz.
- Press Rate 5 to select a scan rate of 50 to 65 kHz.

Figure 3-16: The Video Scan-Rate Menu
Triggering
Taking Measurements

TDS 300 Series oscilloscopes have two features that make them easy for you to obtain quantitative data from a displayed waveform: automated measurements and cursors.

Automated Measurements

The oscilloscope can perform 21 different automated measurements on a waveform (four measurements at any one time). To access these measurements, press the MEASURE button, shown in Figure 3-17.

![Figure 3-17: The MEASURE Button](image)

The MEASURE button activates the measure menu, shown in Figure 3-18.
Figure 3-18: The Measure Menu and Active Measurements

Use the measure menu to perform the following tasks.

Activate a Measurement — Use this procedure to activate a measurement for the selected waveform.

1. Press the main menu button **Select Measmnt for**.
2. If necessary, press the lowermost side menu button (labeled —more— x out of 6) to page through the available measurements until the measurement you want to take appears in the side menu.
3. Then press one of the top four side menu buttons to activate a particular measurement.

The measured values appear to the left of the side menu, as shown in Figure 3-18. For definitions of the available measurements, see Table 3-1.

NOTE

Measurements only remain active while the channel is active. If you activate several measurements for a channel and then press the **WAVEFORM OFF** button, the measurements disappear just like the waveform.
Table 3-1: Measurement Definitions

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Timing measurement. Time it takes for the first complete signal cycle to happen in the waveform or gated region. The reciprocal of frequency. Measured in seconds.</td>
</tr>
<tr>
<td>Frequency</td>
<td>Timing measurement for the first cycle in the waveform or gated region. The reciprocal of the period. Measured in Hertz (Hz) where 1 Hz = 1 cycle per second.</td>
</tr>
<tr>
<td>Positive Width</td>
<td>Timing measurement of the first pulse in the waveform or gated region. The distance (time) between MidRef (default 50%) amplitude points of a positive pulse.</td>
</tr>
<tr>
<td>Negative Width</td>
<td>Timing measurement of the first pulse in the waveform or gated region. The distance (time) between MidRef (default 50%) amplitude points of a negative pulse.</td>
</tr>
<tr>
<td>Rise time</td>
<td>Timing measurement. Time taken for the leading edge of the first pulse in the waveform or gated region to rise from a Low Ref value (default = 10%) to a High Ref value (default = 90%) of its final value.</td>
</tr>
<tr>
<td>Fall Time</td>
<td>Timing measurement. Time taken for the falling edge of the first pulse in the waveform or gated region to fall from a High Ref value (default = 90%) to a Low Ref value (default 10%) of its final value.</td>
</tr>
<tr>
<td>Positive Duty Cycle</td>
<td>Timing measurement of the first cycle in the waveform or gated region. The ratio of the positive pulse width to the signal period expressed as a percentage.</td>
</tr>
<tr>
<td></td>
<td>[\text{PositiveDutyCycle} = \frac{\text{PositiveWidth}}{\text{Period}} \times 100%]</td>
</tr>
<tr>
<td>Negative Duty Cycle</td>
<td>Timing measurement of the first cycle in the waveform or gated region. The ratio of the negative pulse width to the signal period expressed as a percentage.</td>
</tr>
<tr>
<td></td>
<td>[\text{NegativeDutyCycle} = \frac{\text{NegativeWidth}}{\text{Period}} \times 100%]</td>
</tr>
<tr>
<td>Burst Width</td>
<td>Timing measurement. The duration of a burst. Measured over the entire waveform or gated region.</td>
</tr>
<tr>
<td>Positive Overshoot</td>
<td>Voltage measurement over the entire waveform or gated region.</td>
</tr>
<tr>
<td></td>
<td>[\text{PositiveOvershoot} = \frac{\text{Max} - \text{High}}{\text{Amplitude}} \times 100%]</td>
</tr>
<tr>
<td>Negative Overshoot</td>
<td>Voltage measurement. Measured over the entire waveform or gated region.</td>
</tr>
<tr>
<td></td>
<td>[\text{NegativeOvershoot} = \frac{\text{Low} - \text{Min}}{\text{Amplitude}} \times 100%]</td>
</tr>
<tr>
<td>High</td>
<td>The value used as 100% whenever High Ref, Mid Ref, and Low Ref values are needed (as in fall time and rise time measurements). Measured over the entire waveform or gated region.</td>
</tr>
</tbody>
</table>
Taking Measurements

Table 3-1: Measurement Definitions (Cont.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Low icon]</td>
<td>The value used as 0% whenever High Ref, Mid Ref, and Low Ref values are needed as in fall time and rise time measurements. Measured over the entire waveform or gated region.</td>
</tr>
<tr>
<td>![Maximum icon]</td>
<td>Voltage measurement. The maximum amplitude. Typically the most positive peak voltage. Measured over the entire waveform or gated region.</td>
</tr>
<tr>
<td>![Minimum icon]</td>
<td>Voltage measurement. The minimum amplitude. Typically the most negative peak voltage. Measured over the entire waveform or gated region.</td>
</tr>
<tr>
<td>![Peak to Peak icon]</td>
<td>Voltage measurement. The absolute difference between the maximum and minimum amplitude in the entire waveform or gated region.</td>
</tr>
<tr>
<td>![Amplitude icon]</td>
<td>Voltage measurement. The high value less the low value measured over the entire waveform or gated region. */ Amplitude = High − Low */</td>
</tr>
<tr>
<td>![Mean icon]</td>
<td>Voltage measurement. The arithmetic mean over the entire waveform or gated region.</td>
</tr>
<tr>
<td>![Cycle Mean icon]</td>
<td>Voltage measurement. The arithmetic mean over the first cycle in the waveform, or the first cycle in the gated region.</td>
</tr>
<tr>
<td>![Cycle RMS icon]</td>
<td>Voltage measurement. The true Root Mean Square voltage over the first cycle in the waveform, or the first cycle in the gated region.</td>
</tr>
<tr>
<td>![RMS icon]</td>
<td>Voltage measurement. The true Root Mean Square voltage over the entire waveform or gated region.</td>
</tr>
</tbody>
</table>

Remove a Measurement — Press the main menu button **Remove Measrmnt**. Use the top four side menu buttons to remove specific measurements or use the lowest side menu button to remove all measurements.

Use Gating — By default, TDS 300 Series oscilloscopes take automated measurements on the entire waveform record. If you want a measurement of only a portion of the waveform, you can use gating to mark the boundaries of that portion. Use this procedure to “gate” a signal.

1. Press the main menu button **Select Measrmnt for**....
2. If necessary, press the lowermost side menu button (labeled **more** x out of 6) to page through the available measurements until the measurement you want to take appears in the side menu.
3. Then press one of the top four side menu buttons to activate a particular measurement.
4. Press the main menu button **Gating**.
5. Press the side menu button **Gate with V Bar Cursors**.
6. Use the **General Purpose Knob** to set one cursor to the left edge of your gate.
7. Press TOGGLE.

8. Use the General Purpose Knob to set the other cursor to the right edge of the gate. All automated measurements now take data only from the portion of the waveform that is within the gate.

9. Press Gate Off to turn gating off.

NOTE

Gate Off deactivates the gating function, but it does not deactivate the vertical cursors. Deactivate the cursors from the cursor menu as described in the next section.

Switch High-Low Setup — Press the main menu button High—Low Setup to change the way the measurement system determines the high and low levels of waveforms. Use the side menu to select from these options.

- Press Histogram to set the levels statistically. The oscilloscope attempts to find the highest density of points above and below the midpoint, ignoring spikes. This method works well for measuring square waves and pulse waveforms.

- Press Min—Max to set the levels to the lowest amplitude (most negative) and highest amplitude (most positive) samples.

Set Reference Levels — Press the main menu button Reference Levels to set the high, middle, and low reference levels. The oscilloscope uses these levels for rise time, fall time, width, and overshoot measurements. Use the side menu to select from these options.

- Press Set Levels in to toggle the units of the reference levels. Switch between volts and percent.

- Press High Ref, Mid Ref, or Low Ref to select a particular reference level. Use the General Purpose Knob to alter the selected reference level. The defaults are 90%, 50%, and 10%, respectively.

Taking Measurements with Cursors

You can also take quantitative measurements of a waveform with the cursor system. To take measurements with cursors, follow this procedure.

1. Press the front panel button CURSOR, shown in Figure 3-19. The CURSOR button calls up the cursor menu, shown in Figure 3-20.
Taking Measurements

Figure 3-19: The CURSOR Button

Figure 3-20: The Cursor Menu

2. If you want to take a time measurement in Hertz instead of seconds, press the main menu button Time Units and use the side menu to switch between the two.

3. If the main menu selection Function is not highlighted, press its main menu button.

4. Use the side menu to select the type of measurement you want to take. Select H Bars to take a voltage measurement, select V Bars to take a time measurement, or select Paired to take simultaneous voltage and time measurements.
5. Use the **General Purpose Knob** to move one cursor to a desired measurement point. For example, if you wanted to measure both the peak-to-peak voltage and period of a sine wave, you would start by moving one paired cursor to a “trough” (see Figure 3-21).

![Figure 3-21: Paired Cursor Measurements of a Sine Wave](image)

6. Press **TOGGLE**.

7. Use the **General Purpose Knob** to move the second cursor to another desired measurement point. To continue the example, you would move the second cursor to the previous “peak.”

8. Read the measured value(s) at the upper right corner of the display next to the Δ sign(s). Figure 3-21 shows a sine wave with a 5.48 V_{p-p} and a 13.2 μs period (6.6 μs X 2).
Taking Measurements
Controlling Acquisition

To access the acquisition controls, press the front panel button **ACQUIRE**, shown in Figure 3-22.

![Figure 3-22: The ACQUIRE Button](image)

The **ACQUIRE** button activates the acquire menu, shown in Figure 3-23.

![Figure 3-23: The Acquire Menu](image)

Use the acquire menu to perform these tasks.
Controlling Acquisition

Select Acquisition Mode — Press the main menu button Mode. Use the side menu to select from these modes.

- Press **Sample** to select sample mode.
- Press **Peak Detect** to select peak detect mode. Peak detect mode only operates at SEC/DIV settings of 25 μs or slower.
- Press **Envelope** to select envelope mode. Use the **General Purpose Knob** to adjust the number of envelopes (2, 4, 8, 16, 32, 64, 128, 256, or ∞).
- Press **Average** to select average mode. Use the **General Purpose Knob** to adjust the number of acquisitions to average (2, 4, 8, 16, 32, 64, 128, or 256).

Activate Single Sequence Mode — Press the main menu button **Stop After** and then the side menu button **Single Acquisition Sequence**.

When in single sequence mode, the oscilloscope acquires a single sequence, display it, and then waits for you to press the **RUN/STOP** button.

The exact nature of a “sequence” depends on the present acquisition mode. In sample or peak detect mode, a “sequence” is a single acquisition. In envelope or average mode, a “sequence” is a number of acquisitions equal to the number of envelopes or averages.

For example, when both average and single sequence mode are active and the number of averages is 16, the oscilloscope collects 16 acquisitions, averages them, displays the resulting waveform, and stops until you press the **RUN/STOP** button.

To deactivate single sequence mode, press the side menu button **RUN/STOP button only**.
Controlling the Display

To access the display controls, press the front panel button **DISPLAY**, shown in Figure 3-24.

![Display Button](image)

Figure 3-24: The DISPLAY Button

The **DISPLAY** button activates the display menu, shown in Figure 3-25.

![Display Menu](image)

Figure 3-25: The Display Menu

Use the display menu to perform these tasks.
Controlling the Display

Select Display Style — Press the main menu button **Style**. Use the side menu to select from these display styles.

- Press **Vectors** to select vector display style. The oscilloscope draws a vector between each pair of waveform points.
- Press **Dots** to select dot display mode. The oscilloscope displays only the waveform points.
- Press **Vector Accumulate** or **Dot Accumulate** to set the display to accumulate dots. Use the **General Purpose Knob** to adjust the time limit (from 500 ms to 10 s in 250 ms increments or \(\infty \)). The display accumulates dots until it reaches the time limit. It then clears the waveform and starts over. **Dot Accumulate** mode shows the latest acquired waveform in dot format, while **Vector Accumulate** mode shows it in vector format.

Adjust Display Intensity — Press the main menu button **Intensity**. Use the side menu to select from the following.

- Press **Overall** to adjust the intensity of the screen as a whole. Use the **General Purpose Knob** to vary screen intensity.
- Toggle **Text/Grat** to switch the text and graticule between bright and dim.
- Toggle **Waveform** to switch the waveform between bright and dim.
- Press **Contrast** to adjust the contrast between the bright and dim settings. Use the **General Purpose Knob** to vary the contrast level from 100% to 250%. (When you set contrast to 200%, the dim setting is half as bright as the bright setting.)

Add or Remove the Trigger ‘T’ — By default, TDS 300 oscilloscopes display a ‘T’ at the trigger point. Press the main menu button **Readout Options** and then toggle the **Display ‘T’ @ Trigger Point** button to remove and add this feature.

Select Between Full and Frame Graticule — Press the main menu button **Graticule** and then use the side menu to switch between a full graticule and a simple frame.

Select Display Format — Press the main menu button **Format** and then use the side menu to switch between YT and XY modes.
Making Hardcopies
(Option 14 Equipped Instruments Only)

By using the Option 14 Communications Interface, you can make hardcopies of waveforms with the oscilloscope. To make a hardcopy, connect your hardcopy device to the appropriate interface on the rear panel and press the HARDCOPY button, shown in Figure 3-26.

![Figure 3-26: The HARDCOPY Button](image)

To abort a hard copy enter the System I/O menu as described in the next section and press the main menu button Clear Spool.

Configuring Hard Copy Output

Before you can successfully make a hard copy, you need to configure the hard copy output to match your hard copy device. Use this procedure.

1. Press the UTILITY button, shown in Figure 3-27.

![Figure 3-27: The UTILITY Button](image)
2. Repeatedly press the leftmost main menu button until I/O is highlighted in the pop-up. This activates the system I/O menu, shown in Figure 3-28.

![Figure 3-28: The System I/O Menu](image)

3. Press the main menu button **Hcp Port**. Use the side menu to select **Centronics**, **GPIB**, or **RS-232C**.

4. Press the main menu button **Hcp Layout**. Use the side menu to select **Landscape** or **Portrait**.

5. Press the main menu button **Hcp Format**. Use the side menu to select your printer format (press the lowermost side menu button, labeled –more– x of 3, to page through the formats as necessary). Formats available are **Thinkjet**, **Deskjet**, **Laserjet**, **Epson**, **Interleaf**, **TIFF**, **PCX**, **BMP**, **EPS** (Encapsulated PostScript), **DPU 411/II**, and **DPU 412**.

6. If you are using the GPIB as your hard copy port, press the main menu button **GPIB**. Then press the side menu button **Hardcopy (Talk Only)**.

7. If you are using the RS-232C as your hard copy port, press the main menu button **RS-232C**. Then press, in turn, each side menu button until the desired parameter settings are displayed in the side menu. Or, if its settings are appropriate, press **Set RS-232 Parameters to Default Values**. Remember, the parameter settings you select must be compatible with the settings of your hardcopy device or personal computer. (For additional RS-232 information see your **TDS 310, TDS 320, & TDS 350 Programmer Manual**.)

You are now ready to make a hard copy.
Saving and Recalling Front-Panel Setups

TDS 300 Series oscilloscopes can store up to ten front-panel setups in internal memory for an indefinite period. To access front-panel save and recall features, press the **SAVE/RECALL SETUP** button, shown in Figure 3-29.

Figure 3-29: The SAVE/RECALL SETUP Button

Pressing the button activates the save/recall setup menu, shown in Figure 3-30.

Figure 3-30: The Save/Recall Setup Menu
Use the save/recall setup menu to perform the following tasks.

Save the Current Setup — Press the main menu button **Save Current Setup**. Then select a setup from the side menu (press the lowermost side menu button, labeled —more— x of 3, to page through the setups). Then press the side menu button **OK Overwrite Saved Setup**.

Recall a Saved Setup — Press the main menu button **Recall Saved Setup**. Then select a destination setup memory from the side menu (press the lowermost side menu button, labeled —more— x of 3, to page through the setups).

Recall the Factory Setup — Press the main menu button **Recall Factory Setup**. Then press the side menu button **OK Confirm Factory Init**.

NOTE

The Tek Secure feature (page 3-47) will erase all saved setups.
Using the Utility Menu

The utility menu is actually four menus in one. Access these menus by pressing the **UTILITY** button (Figure 3-31) and then the leftmost main menu button. The pop-up menu (see Figure 3-32) shows these options.

- The **Config** menu offers Tek Secure (which overwrites all setup and reference memories) and the software version identifier as main menu selections.

- The **I/O** menu (Option 14 instruments only) pertains to making hardcopies (see page 3-43) and remote operations (see the **TDS 310, TDS 320, & TDS 350 Programmer Manual**).

- The **Cal** menu, which you should only use in conjunction with the adjustment procedures (page 7-1).

- The **Diag** menu, which you should only use in conjunction with the troubleshooting procedures (page 8-27).

![Figure 3-31: The Utility Button](image1)

![Figure 3-32: The Utility Pop-Up Menu](image2)
Specifications
Specifications

This section contains complete specifications for the TDS 310, TDS 320, and TDS 350. The specifications are divided into three subsections, one for each of three classes of traits: warranted characteristics, typical characteristics, and nominal traits.
Warranted Characteristics

Warranted characteristics are described in terms of quantifiable performance limits that are warranted. This subsection lists only warranted characteristics.

NOTE

In these tables, those warranted characteristics that are checked in the Performance Tests, starting on page 6-11, appear in **boldface** type under the column Name.

Performance Conditions

The electrical characteristics found in these tables of warranted characteristics apply when the oscilloscope has been adjusted at an ambient temperature between +20° C and +30° C, has had a warm-up period of at least 20 minutes, and is operating at an ambient temperature between −10° C and +55° C (unless otherwise noted).

Table 4-1: Warranted Characteristics — Signal Acquisition System

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>DC Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy, DC Voltage Measurement, Average Acquisition Mode</td>
<td>Measurement Type Average of ≥16 waveforms</td>
<td>±(2.0% ×</td>
</tr>
<tr>
<td></td>
<td>Delta volts between any two averages of ≥16 waveforms acquired under the same setup and ambient conditions</td>
<td>±(2.0% ×</td>
</tr>
<tr>
<td>Accuracy, DC Gain, Sample or Average Acquisition Modes</td>
<td>±2%</td>
<td></td>
</tr>
<tr>
<td>Pulse Response, Peak Detect and Envelope Mode</td>
<td>Sec/Div Setting 5 s/div − 25 μs/div</td>
<td>Minimum Pulse Width 10 ns</td>
</tr>
<tr>
<td></td>
<td>TDS 310: 10 μs/div − 10 ns/div</td>
<td>The greater of 10 ns or .02 × sec/div setting</td>
</tr>
<tr>
<td></td>
<td>TDS 320: 10 μs/div − 5 ns/div</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDS 350: 10 μs/div − 2.5 ns/div</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1: Warranted Characteristics — Signal Acquisition System (Cont.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy, Offset</td>
<td></td>
</tr>
<tr>
<td>Volts/Div Setting</td>
<td>Offset Accuracy</td>
</tr>
<tr>
<td>2 mV/div − 99.5 mV/div</td>
<td>±(0.4% ×</td>
</tr>
<tr>
<td>100 mV/div − 995 mV/div</td>
<td>±(0.4% ×</td>
</tr>
<tr>
<td>1 V/div − 10 V/div</td>
<td>±(0.4% ×</td>
</tr>
<tr>
<td>Analog Bandwidth, DC Coupled</td>
<td></td>
</tr>
<tr>
<td>TDS 310: DC − ≥50 MHz</td>
<td></td>
</tr>
<tr>
<td>TDS 320: DC − ≥100 MHz</td>
<td></td>
</tr>
<tr>
<td>TDS 350: DC − ≥200 MHz; DC − ≥180 MHz for 2 mV/div</td>
<td></td>
</tr>
<tr>
<td>Cross Talk (Channel Isolation)</td>
<td>≥100:1 at 50 MHz with equal Volts/Div settings on each channel</td>
</tr>
<tr>
<td>Input Impedance, DC-Coupled</td>
<td>1 MΩ ±1% in parallel with 20 pF ±2.0 pF</td>
</tr>
<tr>
<td>Input Voltage, Maximum</td>
<td>±400 V (DC + peak AC); derate at 20 dB/decade above 100 kHz to 13 V peak AC at 3 MHz and above</td>
</tr>
<tr>
<td>Lower Frequency Limit, AC Coupled(^2)</td>
<td>≤10 Hz</td>
</tr>
</tbody>
</table>

\(^{1}\)Net Offset = Offset − (Position × Volts/Div). Net offset is the voltage level at the center of the A-D converter dynamic range. Offset Accuracy is the accuracy of this voltage level.

\(^{2}\)The AC Coupled Lower Frequency Limits are reduced by a factor of 10 when 10X, passive probes are used.

Table 4-2: Warranted Characteristics — Time Base System

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy, Long Term Sample Rate and Delay Time</td>
<td>±100 ppm over any ≥1 ms interval</td>
</tr>
<tr>
<td>Accuracy, Delta Time Measurements(^1,2)</td>
<td>For single-shot acquisitions using sample acquisition mode and a bandwidth limit setting of FULL:</td>
</tr>
<tr>
<td></td>
<td>±(1 WI + 100 ppm ×</td>
</tr>
<tr>
<td></td>
<td>For repetitive acquisitions using average acquisition mode with ≥16 averages and a bandwidth limit setting of FULL:</td>
</tr>
<tr>
<td></td>
<td>±(1 WI + 100 ppm ×</td>
</tr>
</tbody>
</table>

\(^{1}\)For input signals ≥5 divisions in amplitude and a slew rate of ≥2.0 divisions/ns at the delta time measurement points. Signal must be acquired at a volts/division setting ≥5 mV/division.

\(^{2}\)The WI (waveform interval) is the time between the samples in the waveform record. Also, see the footnotes for Sample Rate Range and Equivalent Time or Interpolated Waveform Rates in Table 4-11 on page 4-12.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy, Trigger Level, DC Coupled</td>
<td>Trigger Source</td>
<td>Sensitivity</td>
</tr>
<tr>
<td></td>
<td>CH1 or CH2</td>
<td>$\pm (3% \text{ of } \left</td>
</tr>
<tr>
<td></td>
<td>External</td>
<td>$\pm (6% \text{ of } \left</td>
</tr>
<tr>
<td></td>
<td>External/10</td>
<td>$\pm (6% \text{ of } \left</td>
</tr>
<tr>
<td>Sensitivity, Edge-Type Trigger, DC Coupled</td>
<td>Trigger Source</td>
<td>Sensitivity</td>
</tr>
<tr>
<td></td>
<td>CH1 or CH2</td>
<td>TDS 310: 0.35 division from DC to 20 MHz, increasing to 1 div at 50 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDS 320: 0.35 division from DC to 50 MHz, increasing to 1 div at 100 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDS 350: 0.35 division from DC to 50 MHz, increasing to 1 div at 200 MHz</td>
</tr>
<tr>
<td></td>
<td>External</td>
<td>TDS 310: 50 mV from DC to 20 MHz, increasing to 150 mV at 50 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDS 320: 50 mV from DC to 50 MHz, increasing to 150 mV at 100 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDS 350: 50 mV from DC to 50 MHz, increasing to 150 mV at 200 MHz</td>
</tr>
<tr>
<td></td>
<td>External/10</td>
<td>TDS 310: 500 mV from DC to 20 MHz, increasing to 1.5 V at 50 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDS 320: 500 mV from DC to 50 MHz, increasing to 1.5 V at 100 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDS 350: 500 mV from DC to 50 MHz, increasing to 1.5 V at 200 MHz</td>
</tr>
</tbody>
</table>

Input Impedance, External Trigger
$1 \text{ M} \Omega \pm 2\% \text{ in parallel with } 20 \text{ pF} \pm 2 \text{ pF}$

Maximum Input Voltage, External Trigger
$\pm 400 \text{ V (DC }+\text{ peak AC)}; \text{ derate at } 20 \text{ dB/decade above } 100 \text{ kHz to } 13 \text{ V peak AC at } 3 \text{ MHz and above}$

$^1\text{Net Offset = Offset – (Position }\times\text{ Volts/Div). Net Offset is the voltage level at the center of the A-D converter dynamic range. Offset Accuracy is the accuracy of this voltage level.}$
Table 4-4: Power Requirements

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Voltage and Frequency</td>
<td>90 to 132 VAC(_{\text{RMS}}), continuous range, for 47 Hz through 440 Hz</td>
</tr>
<tr>
<td></td>
<td>132 to 250 VAC(_{\text{RMS}}), continuous range, for 47 Hz through 63 Hz</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>≤65 Watts (120 VA)</td>
</tr>
</tbody>
</table>

Table 4-5: Warranted Characteristics — Environmental, Safety, and Reliability

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Atmospherics | Temperature:
| | -10\(^\circ\) C to +55\(^\circ\) C, operating; |
| | -51\(^\circ\) C to +71\(^\circ\) C, non-operating |
| | Relative humidity:
| | to 95%, at or below +40\(^\circ\) C; to 75%, +41\(^\circ\) C to +55\(^\circ\) C |
| | Altitude:
| | To 15,000 ft (4570 m), operating; |
| | to 40,000 ft (12190 m), non-operating |
| Dynamics | Random vibration:
| | 0.31 g\(_{\text{RMS}}\), from 5 to 500 Hz, 10 minutes each axis, operating; |
| | 2.46 g\(_{\text{RMS}}\), from 5 to 500 Hz, 10 minutes each axis, non-operating |
| Emissions\(^1\) | Meets or exceeds the requirements of the following standards:
| | EN 50081-1 European Community Requirements |
| | EN 55022 radiated emissions |
| | EN 55022 Class B conducted emissions |
| | EN 60555-2 power harmonics |
| | VFG 0243 |
| | FCC Rules and Regulations, 47 CFR, Part 15, Subpart B, Class A |
| Susceptibility\(^2\) | TDS 310 and TDS 320: ≤±0.2 division waveform displacement, or ≤0.4 division increase in p-p noise. |
| | TDS 350: ≤±0.2 division waveform displacement, or ≤0.4 division increase in p-p noise below 200 MHz. ≤±0.3 division waveform displacement, or ≤±0.6 division increase in p-p noise from 200 MHz to 500 MHz. |
| | The instruments are subjected to the EMI specified in the following standards:
| | EN 50082-1 European Community Requirements |
| | IEC 801-3 radiated susceptibility |
| | IEC 801-4 fast transients |
| | IEC 801-5 AC surge |

\(^1\)To maintain emission requirements when connecting to the I/O interface of this oscilloscope, use only a high-quality, double-shielded (braid and foil) cable. The cable shield must have low impedance connections to both connector housings. The VGA cable must also have ferrite cores at either end. Acceptable cables are listed in Table 1-6 on page 1-6.

\(^2\)Susceptibility test run with both channel inputs terminated with grounding caps, both channels set to 2 mV/Div, DC Coupling, the trigger source set to Line, the Acquisition Mode set to Peak Detect, and the time base set to 25 μs/Div.
Typical characteristics are described in terms of typical or average performance. Typical characteristics are not warranted.

Table 4-6: Typical Characteristics — Signal Acquisition System

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy, DC Gain, Envelope Acquisition Mode</td>
<td>±3% for sec/div settings from 5 Sec/Div to 25 μsec/div;</td>
</tr>
<tr>
<td></td>
<td>±2% for sec/div settings from 10 μs/div to 10 ns/div (TDS 310);</td>
</tr>
<tr>
<td></td>
<td>±2% for sec/div settings from 10 μs/div to 5 ns/div (TDS 320);</td>
</tr>
<tr>
<td></td>
<td>±2% for sec/div settings from 10 μs/div to 2.5 ns/div (TDS 350)</td>
</tr>
<tr>
<td>Accuracy, DC Voltage Measurement, Sample Acquisition Mode</td>
<td>Measurement Type</td>
</tr>
<tr>
<td></td>
<td>Any Sample</td>
</tr>
<tr>
<td></td>
<td>Delta Volts between any two samples2 acquired under the same set-up and ambient conditions</td>
</tr>
<tr>
<td></td>
<td>DC Accuracy</td>
</tr>
<tr>
<td></td>
<td>±(2.0% × (</td>
</tr>
<tr>
<td></td>
<td>±(2.0% ×</td>
</tr>
<tr>
<td>Frequency Limit, Upper, 20 MHz Bandwidth Limited</td>
<td>20 MHz</td>
</tr>
<tr>
<td>Step Response Settling Error</td>
<td>Volts/Div Setting</td>
</tr>
<tr>
<td></td>
<td>Step Amplitude</td>
</tr>
<tr>
<td></td>
<td>Settling Error (%)3</td>
</tr>
<tr>
<td></td>
<td>100 ns</td>
</tr>
<tr>
<td></td>
<td>20 ns</td>
</tr>
<tr>
<td>2 mV/div – 99.5 mV/div</td>
<td>≤2 V</td>
</tr>
<tr>
<td>100 mV/div – 995 mV/div</td>
<td>≤20 V</td>
</tr>
<tr>
<td>1 V/div – 10 V/div</td>
<td>≤200 V</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio (CMRR)</td>
<td>100:1 at 60 Hz, reducing to 20:1 at 50 MHz, with equal Volts/Div and Coupling settings on each channel.</td>
</tr>
</tbody>
</table>

1Net Offset = Offset − (Position × Volts/Div). Net Offset is the voltage level at the center of the A-D converter dynamic range. Offset Accuracy is the accuracy of this voltage level.

2The samples must be acquired under the same setup and ambient conditions.

3The values given are the maximum absolute difference between the value at the end of a specified time interval after the mid-level crossing of the step, and the value one second after the mid-level crossing of the step, expressed as a percentage of the step amplitude.

4Reference is a 9-div p-p sine wave input sampled at 200 MS/s for the TDS 310, 500 MS/s for the TDS 320, and 1 GS/s for the TDS 350.
Table 4-7: Typical Characteristics — Triggering System

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Trigger-Position Error<sup>1,2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Error, Trigger Position, Edge Triggering</td>
<td>Acquire Mode</td>
<td>±(1 WI + 2 ns)</td>
</tr>
<tr>
<td></td>
<td>Sample, Average</td>
<td>±(2 WI + 2 ns)</td>
</tr>
<tr>
<td>Sensitivity, Video-Type Trigger</td>
<td>Source</td>
<td>0.6 division of video sync signal</td>
</tr>
<tr>
<td></td>
<td>CH1 or CH2</td>
<td>75 mV of video sync signal</td>
</tr>
<tr>
<td></td>
<td>External</td>
<td>750 mV of video sync signal</td>
</tr>
<tr>
<td>Lowest Frequency for Successful Operation of “Set Level to 50%” Function</td>
<td>50 Hz</td>
<td></td>
</tr>
<tr>
<td>Sensitivity, Edge Type Trigger, Not DC Coupled<sup>3</sup></td>
<td>Trigger Coupling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>Same as DC-coupled limits<sup>4</sup> for frequencies above 60 Hz. Attenuates signals below 60 Hz.</td>
</tr>
<tr>
<td></td>
<td>Noise Reject</td>
<td>Three and one half times the DC-coupled limits<sup>4</sup></td>
</tr>
<tr>
<td></td>
<td>High Frequency Reject</td>
<td>One and one half times times the DC-coupled limits<sup>4</sup> from DC to 30 kHz. Attenuates signals above 30 kHz.</td>
</tr>
<tr>
<td></td>
<td>Low Frequency Reject</td>
<td>One and one half times the DC-coupled limits<sup>4</sup> for frequencies above 80 kHz. Attenuates signals below 80 kHz.</td>
</tr>
</tbody>
</table>

¹The trigger position errors are typically less than the values given here. These values are for triggering signals having a slew rate at the trigger point of ±0.5 division/ns.

²The waveform interval (WI) is the time between the samples in the waveform record. Also, see the footnote for the characteristics Sample Rate Range and Equivalent Time or Interpolated Waveform Rates in Table 4-11 on page 4-12.

³The minimum sensitivity for obtaining a stable trigger. A stable trigger results in a uniform, regular display triggered on the selected slope. The trigger point must not switch between opposite slopes on the waveform, and the display must not “roll” across the screen on successive acquisitions. The TRIG'D LED stays constantly lighted when the SEC/DIV setting is 2 ms or faster but may flash when the SEC/DIV setting is 10 ms or slower.

⁴See the characteristic Sensitivity, Edge-Type Trigger, DC Coupled in Table 4-3, which begins on page 4-5.

Table 4-8: Typical Characteristics — Probe Compensator Output

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage and Frequency, Probe Compensator</td>
<td>Characteristic</td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
</tr>
</tbody>
</table>
Table 4-9: Typical Characteristics — Data Handling

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time, Data-Retention, Nonvolatile Memory(^1,2)</td>
<td>≥5 Years</td>
</tr>
</tbody>
</table>

\(^1\)The time that reference waveforms, stored setups, and calibration constants are retained when there is no power to the oscilloscope.

\(^2\)Data is maintained by a lithium poly-carbon monofluoride battery.
Typical Characteristics
Nominal Traits

Nominal traits are described using simple statements of fact such as “Two, identical” for the trait “Input Channels, Number of,” rather than in terms of limits that are performance requirements.

Table 4-10: Nominal Traits — Signal Acquisition System

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth Selections</td>
<td>20 MHz and FULL</td>
</tr>
<tr>
<td>Digitizers, Number of</td>
<td>Two, identical, digitized simultaneously</td>
</tr>
<tr>
<td>Digitized Bits, Number of</td>
<td>8 bits<sup>1</sup></td>
</tr>
<tr>
<td>Input Channels, Number of</td>
<td>Two, identical, called CH 1 and CH 2</td>
</tr>
<tr>
<td>Input Coupling</td>
<td>DC, AC, or GND</td>
</tr>
<tr>
<td>Ranges, Offset, All Channels</td>
<td>Volts/Div Setting</td>
</tr>
<tr>
<td></td>
<td>2 mV/div – 99.5 mV/div</td>
</tr>
<tr>
<td></td>
<td>100 mV/div – 995 mV/div</td>
</tr>
<tr>
<td></td>
<td>1 V/div – 10 V/div</td>
</tr>
<tr>
<td></td>
<td>Offset Range</td>
</tr>
<tr>
<td></td>
<td>±1 V</td>
</tr>
<tr>
<td></td>
<td>±10 V</td>
</tr>
<tr>
<td></td>
<td>±100 V</td>
</tr>
<tr>
<td>Range, Position</td>
<td>±5 divisions</td>
</tr>
<tr>
<td>Range, Sensitivity<sup>2</sup></td>
<td>2 mV/div to 10 V/div</td>
</tr>
<tr>
<td>Rise Time</td>
<td>TDS 310: 7 ns</td>
</tr>
<tr>
<td></td>
<td>TDS 320: 3.5 ns</td>
</tr>
<tr>
<td></td>
<td>TDS 350: 1.75 ns</td>
</tr>
<tr>
<td>TekProbe Interface</td>
<td>Level one probe coding</td>
</tr>
</tbody>
</table>

¹Displayed vertically with 25 digitization levels (DLs) per division and 10.24 divisions dynamic range with zoom off. A DL is the smallest voltage level change that the 8-bit A-D Converter can resolve, with the input scaled to the volts/division setting of the channel used. Expressed as a voltage, a DL is equal to 1/25 of a division times the volts/division setting.

²The sensitivity ranges from 2 mV/div to 10 V/div in a 1–2–5 sequence of coarse settings. Between consecutive coarse settings, the sensitivity can be finely adjusted with a resolution of 1% of the more sensitive setting. For example, between 50 mV/div and 100 mV/div, the volts/division can be set with 0.5 mV resolution.
Table 4-11: Nominal Traits — Time Base System

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range, Sample-Rate1,2</td>
<td>TDS 310: 10 Samples/s to 200 MSamples/s in a 1–2–5 sequence</td>
</tr>
<tr>
<td></td>
<td>TDS 320: 10 Samples/s to 500 MSamples/s in a 1–2–5 sequence</td>
</tr>
<tr>
<td></td>
<td>TDS 350: 10 Samples/s to 1 GSamples/s in a 1–2–5 sequence</td>
</tr>
<tr>
<td>Range, Seconds/Division</td>
<td>TDS 310: 10 ns/div to 5 s/div in a 1–2.5–5 sequence</td>
</tr>
<tr>
<td></td>
<td>TDS 320: 5 ns/div to 5 s/div in a 1–2.5–5 sequence</td>
</tr>
<tr>
<td></td>
<td>TDS 350: 2.5 ns/div to 5 s/div in a 1–2.5–5 sequence</td>
</tr>
<tr>
<td>Range, Time Base Delay Time</td>
<td>16.5 ns to 50 seconds</td>
</tr>
<tr>
<td>Record Length</td>
<td>1,000 samples</td>
</tr>
</tbody>
</table>

1The range of real-time rates, expressed in samples/second, at which a digitizer samples signals at its inputs and stores the samples in memory to produce a record of time-sequential samples

2The Waveform Rate (WR) is the equivalent sample rate of a waveform record. For a waveform record acquired by real-time sampling of a single acquisition, the waveform rate is the same as the real-time sample rate; for a waveform created by interpolation of real-time samples from a single acquisition or by equivalent-time sampling of multiple acquisitions, the waveform rate is faster than the real time sample rate. For all three cases, the waveform rate is 1/(Waveform Interval) for the waveform record, where the waveform interval (WI) is the time between the samples in the waveform record.

Table 4-12: Nominal Traits — Triggering System

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range, Hold Off</td>
<td>500 ns minimum to 10 seconds maximum</td>
</tr>
<tr>
<td>Ranges, Trigger Level</td>
<td>Source Range</td>
</tr>
<tr>
<td>Any Channel</td>
<td>±12 divisions from center of screen</td>
</tr>
<tr>
<td>External</td>
<td>±1.5 Volts</td>
</tr>
<tr>
<td>External /10</td>
<td>±15 Volts</td>
</tr>
<tr>
<td>Line</td>
<td>±300 Volts</td>
</tr>
<tr>
<td>Formats and Field Rates, Video Trigger</td>
<td>Triggers from sync-negative composite video, 525 to 625 lines, 50 Hz to 60 Hz, interlaced or noninterlaced systems with scan rates from 15 kHz to 65 kHz – such as NTSC, PAL, or SECAM</td>
</tr>
<tr>
<td>TekProbe Interface, External Trigger</td>
<td>Level one probe coding</td>
</tr>
</tbody>
</table>

Table 4-13: Nominal Traits — Display System

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT Type</td>
<td>7-inch (17.95 cm) diagonal, magnetic deflection; horizontal raster-scan; P31 green phosphor</td>
</tr>
<tr>
<td>Video Display Resolution</td>
<td>640 pixels horizontally by 480 pixels vertically</td>
</tr>
<tr>
<td></td>
<td>Display area is 5.04 inch (12.92 cm) horizontally by 3.78 inch (9.69 cm) vertically</td>
</tr>
</tbody>
</table>
Table 4-13: Nominal Traits — Display System (Cont.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveform Display Graticule</td>
<td>A single graticule 401 × 501 pixels (8 × 10 divisions, with divisions that are approximately 1 cm by 1 cm)</td>
</tr>
<tr>
<td>Intensity Levels</td>
<td>Dim and Bright, with adjustable Overall Intensity and Contrast</td>
</tr>
</tbody>
</table>

Table 4-14: Nominal Traits — I/O Interface Option

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIB</td>
<td>Part of Option 14 I/O interface or TD3F14A I/O interface field upgrade kit; complies with IEEE Std 488–1987</td>
</tr>
<tr>
<td>RS-232</td>
<td>Part of Option 14 I/O interface or TD3F14A I/O interface field upgrade kit; a 9-pin male DTE RS-232 interface that complies with EIA/TIA 574–90</td>
</tr>
<tr>
<td>Centronics</td>
<td>Part of Option 14 I/O interface or TD3F14A I/O interface field upgrade kit; a 25-pin, IBM PC-type, parallel printer interface that complies electrically with Centronics C332–44, Rev A</td>
</tr>
<tr>
<td>Video Signal Output (Option 14 Only) (TDS310 and TDS 350, B020100 and above; TDS 320, B030100 and above)</td>
<td>DB-9 rear panel Video connector; non-interlaced, with levels that comply with ANSI RS343A VGA compatible at a 30.6 kHz sync rate</td>
</tr>
<tr>
<td>Power Supply, Printer (Option 14 Only) (TDS310 and TDS 350, B020100 and above; TDS 320, B030100 and above)</td>
<td>Power supply connector to supply power to the Option 3P Printer Pack</td>
</tr>
</tbody>
</table>

Table 4-15: Nominal Traits — Power Distribution System

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse Rating</td>
<td>5 mm × 20 mm, (UL 198 G): 3 A Slow, 250 V, (IEC 127): 3.15 A (T), 250 V</td>
</tr>
</tbody>
</table>

Table 4-16: Nominal Traits — Safety Characteristics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Certification</td>
<td>Listed UL 1244; Category Certified CAN/CSA–C22.2 No. 231 Series-M89</td>
</tr>
</tbody>
</table>
Table 4-17: Nominal Traits — Mechanical Characteristics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Standard Instrument 6.8 kg (15 lbs) stand-alone instrument; 8.4 kg (18.5 lbs) with front cover, accessories, and accessories pouch installed; 12.7 kg (28 lbs) when packaged for domestic shipment</td>
</tr>
<tr>
<td></td>
<td>Rackmount Instrument 4.5 kg (10 lbs) for the rackmount conversion kit only; 7.5 kg (17.5 lbs) when kit is packaged for domestic shipment; 6.4 kg (14 lbs), plus weight of rackmount parts, for the rack-mounted instrument (Option 1R); 14.5 kg (32 lbs) when the rackmounted instrument is packaged for domestic shipment</td>
</tr>
<tr>
<td>Overall Dimensions</td>
<td>Standard Instrument (Figure 4-1) Height: 191 mm (7.5 in) with feet and accessories pouch installed 165 mm (6.5 in) without the accessories pouch installed Width: 362 mm (14.25 in) with handle Depth: 471 mm (18.55 in) stand-alone instrument 490 mm (19.28 in) with front cover installed 564 mm (22.2 in) with handle extended</td>
</tr>
<tr>
<td></td>
<td>Rackmount Instrument Height: 178 mm (7 in) Width: 483 mm (19 in) Depth: 472 mm (18.6 in) without handles; 517 mm (20.35 in) including handles</td>
</tr>
</tbody>
</table>
Figure 4-1: TDS 310, TDS 320, and TDS 350 Dimensions
Nominal Traits
WARNING

The following servicing instructions are for use only by qualified personnel. To avoid personnel injury, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so. Refer to the Service Safety Summary prior to performing any service.
Theory of Operation
Theory of Operation

This section describes the electrical operation of the TDS 310, TDS 320, and TDS 350 to the module level.

Logic Conventions

This manual refers to digital logic circuits with standard logic symbols and terms. Unless otherwise stated, all logic functions are described using the positive logic convention: the more positive of the two logic levels is the high (1) state and the more negative level is the low (0) state. Signal states may also be described as “true” meaning their active state or “false” meaning their non-active state. The specific voltages that constitute a high or low state vary among the electronic devices.

Active-low signals are indicated by a tilde (~) prefixed to the signal name (~RESET). Signal names are considered to be either active-high, active-low, or to have both active-high and active-low states.

Module Overview

This overview describes the basic operation of each functional circuit block as shown in Figure 5-1.

Input Signal Path

A signal enters the oscilloscope through a probe connected to a BNC on the A1 Main Board.

Attenuators — Circuitry in the attenuator selects the input coupling and attenuation factor. The processor system controls the attenuators with a serial interface.

Probe Coding Interface — The probe coding interface signals pass through the Main Board to the A62 Front Panel, which senses them.

Acquisition System — The acquisition system amplifies the input signals, samples them, converts them to digital signals, and controls the acquisition process under direction of the processor system. The acquisition system includes the trigger, acquisition timing, and acquisition mode generation and control circuitry.

Processor System — The processor system contains a 68331 microprocessor that controls the entire instrument. The processor passes waveforms and text on to the display system. The Main Board contains both the processor and display systems, in addition to the firmware ROMs.
Figure 5-1: TDS 310, TDS 320, and TDS 350 Block Diagram
Display System — A display controller IC processes text and waveforms. The display system sends the text and waveform information to the monitor assembly as a video signal. The display system also generates and sends vertical (VSYNC) and horizontal (HSYNC) sync signals to the monitor assembly.

Monitor Assembly

All information (waveforms, text, graticules, and pictographs) is displayed by the A26 Monitor Assembly. It generates the high voltages necessary to drive the display tube. It also contains the video amplifier, horizontal oscillator, and the vertical and horizontal yoke driver circuitry.

Front Panel

The processor system sends instructions to and receives information from the Front Panel Processor on the Front Panel Board. The Front Panel Processor reads the front-panel switches and ports, and reports any change in their settings to the processor system. The Front Panel Processor also turns the LEDs on and off.

The Front Panel Processor reads the front-panel menu switches and sends any changes in menu selections to the processor system. The **ON/STBY** button is not read by the Front Panel Processor but passes through the Front Panel Board and the Main Board to the A20 Low Voltage Power Supply.

The front panel also generates the probe compensation signal.

Communications Option

The A2 Option Board has GPIB, RS-232, and Centronics interfaces for external control and hardcopy operations. Also included are a VGA video output port and a power connector for the Option 3P printer.

Low Voltage Power Supply

The A20 Low Voltage Power Supply is a switching power converter. It supplies power to all the circuitry in the oscilloscope.

The Low Voltage Power Supply does not have a main power switch. The **ON/STBY** switch, located on the front panel, controls all the power to the oscilloscope except the standby circuits in the Low Voltage Power Supply.

Fan

The fan provides forced air cooling for the oscilloscope. It connects to a 12 V connector on the Low Voltage Power Supply.
Theory of Operation
Performance Verification
Performance Verification

These procedures verify the TDS 310, TDS 320, and TDS 350 two channel oscilloscopes. Depending on what you want to accomplish, you may only need to perform a few of these procedures.

- To rapidly confirm that this oscilloscope functions, just do the procedures under Self Tests, which begin on page 6-5.

 Advantages: These procedures are quick to do, require no external equipment or signal sources, and perform extensive functional and accuracy testing to provide high confidence that the oscilloscope performs properly. You can use them as a quick check before making a series of important measurements.

- To further check functionality, do the procedures under Functional Tests that begin on page 6-7.

 Advantages: These procedures require minimal additional time to perform, require no additional equipment other than a standard-accessory probe, and more completely test the internal hardware of this oscilloscope. You can use them to quickly determine if the oscilloscope is suitable for putting into service, such as when it is first received.

- If you need a more extensive confirmation of performance, do the Performance Tests, beginning on page 6-11, after doing the Functional and Self Tests just referenced.

 Advantages: These procedures add direct checking of warranted specifications. They require more time and suitable test equipment. (See Equipment Required on page 6-3.)

Conventions

Throughout these procedures the following conventions apply:

- Each test procedure uses the following general format:

 Title of Test
 Equipment Required
 Time Required
 Prerequisites
 Procedure

- Refer to Figure 6-1: “Main menu” refers to the menu that labels the seven menu buttons under the display. “Side menu” refers to the menu that labels the five buttons to the right of the display. “Pop-up menu” refers to a menu that pops up when a main menu button is pressed.
Performance Verification

- Where instructed to use a front-panel button or knob, select from a main or side menu, or verify a readout or status message, the name of the button or knob appears in boldface type.

- Instructions for menu selection follow this format: **FRONT PANEL BUTTON → Pop-Up (if necessary) → Main Menu Button → Side Menu Button**. For example, “Push TRIGGER MENU → Type: Video → Trigger On → Any Line.”

This symbol denotes information you must read to do the procedure properly.

Figure 6-1: Menu Locations
Test Equipment

These procedures use external, traceable signal sources to directly check instrument performance. If your test equipment does not meet the minimum requirements listed in Table 6-1, your test results will be invalid.

Table 6-1: Test Equipment

<table>
<thead>
<tr>
<th>Item Number and Description</th>
<th>Minimum Requirements</th>
<th>Example</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Termination 50 Ω (two required)</td>
<td>Impedance 50 Ω; connectors: female BNC input, male BNC output</td>
<td>Tektronix part number 011-0049-01</td>
<td>Checking delay between channels</td>
</tr>
<tr>
<td>2 Cable, Precision Coaxial (two required)</td>
<td>50 Ω, 91 cm (36 in), male to male BNC connectors</td>
<td>Tektronix part number 012-0482-00</td>
<td>Signal interconnection</td>
</tr>
<tr>
<td>3 Connector, Dual-Banana</td>
<td>Female-BNC to dual-banana</td>
<td>Tektronix part number 103-009-00</td>
<td>Several accuracy tests</td>
</tr>
<tr>
<td>4 Connector, BNC “T”</td>
<td>Male-BNC to dual-female-BNC</td>
<td>Tektronix part number 103-0030-00</td>
<td>Checking trigger sensitivity</td>
</tr>
<tr>
<td>5 Coupler, Dual-Input</td>
<td>Female-BNC to dual-male-BNC</td>
<td>Tektronix part number 067-0525-02</td>
<td>Checking delay between channels</td>
</tr>
<tr>
<td>6 Generator, DC Calibration</td>
<td>Variable amplitude to ±110 V; accuracy to 0.1%</td>
<td>Data Precision 8200</td>
<td>Checking DC offset, gain, and measurement accuracy</td>
</tr>
<tr>
<td>7 Generator, Leveled Sine Wave, Medium-Frequency</td>
<td>200 kHz to 250 MHz; variable amplitude from 5 mV to 4 Vp-p into 50 Ω</td>
<td>TEKTRONIX SG 503 Leveled Sine Wave Generator</td>
<td>Checking trigger sensitivity at low frequencies</td>
</tr>
<tr>
<td>8 Generator, Time Mark</td>
<td>Variable marker frequency from 10 ms to 10 ns; accuracy within 2 ppm</td>
<td>TEKTRONIX TG 501A Time Mark Generator</td>
<td>Checking sample rate and delay-time accuracy</td>
</tr>
<tr>
<td>9 Probe, 10X, included with this instrument</td>
<td>A P6109B (TDS 310 and TDS 320) or P6111B (TDS 350) probe</td>
<td>Tektronix number P6109B (TDS 310 and TDS 320) or P6111B (TDS 350)</td>
<td>Signal interconnection</td>
</tr>
</tbody>
</table>

Test Record

Photocopy the next page and use it to record the performance test results for your instrument.
TDS 310, TDS 320, and TDS 350 Test Record

<table>
<thead>
<tr>
<th>Performance Test</th>
<th>Minimum</th>
<th>Incoming</th>
<th>Outgoing</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage Measurement Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH1 VOLTS/DIV1 V</td>
<td>+97.1 V</td>
<td></td>
<td></td>
<td>+98.9 V</td>
</tr>
<tr>
<td>200 mV</td>
<td>+8.28 V</td>
<td></td>
<td></td>
<td>+8.52 V</td>
</tr>
<tr>
<td>50 mV(^1)</td>
<td>−581 mV</td>
<td></td>
<td></td>
<td>−619 mV</td>
</tr>
<tr>
<td>50 mV(^2)</td>
<td>−881 mV</td>
<td></td>
<td></td>
<td>−919 mV</td>
</tr>
<tr>
<td>Δ at 50 mV</td>
<td>+286 mV</td>
<td></td>
<td></td>
<td>+314 mV</td>
</tr>
<tr>
<td>10 mV</td>
<td>+54.6 mV</td>
<td></td>
<td></td>
<td>+65.4 mV</td>
</tr>
<tr>
<td>5 mV</td>
<td>−982 mV</td>
<td></td>
<td></td>
<td>−998 mV</td>
</tr>
<tr>
<td>CH2 VOLTS/DIV1 V</td>
<td>+97.1 V</td>
<td></td>
<td></td>
<td>+98.9 V</td>
</tr>
<tr>
<td>200 mV</td>
<td>+8.28 V</td>
<td></td>
<td></td>
<td>+8.52 V</td>
</tr>
<tr>
<td>50 mV(^1)</td>
<td>−581 mV</td>
<td></td>
<td></td>
<td>−619 mV</td>
</tr>
<tr>
<td>50 mV(^2)</td>
<td>−881 mV</td>
<td></td>
<td></td>
<td>−919 mV</td>
</tr>
<tr>
<td>Δ at 50 mV</td>
<td>+286 mV</td>
<td></td>
<td></td>
<td>+314 mV</td>
</tr>
<tr>
<td>10 mV</td>
<td>+54.6 mV</td>
<td></td>
<td></td>
<td>+65.4 mV</td>
</tr>
<tr>
<td>5 mV</td>
<td>−982 mV</td>
<td></td>
<td></td>
<td>−998 mV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analog Bandwidth</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td>42.5 mV</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>CH2</td>
<td>42.5 mV</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long Term Sample Rate and Delay Time Accuracy</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−2.0 Div</td>
<td></td>
<td></td>
<td>+2.0 Div</td>
</tr>
</tbody>
</table>

Edge Trigger Sensitivity, DC Coupled				
Main Trigger	stable trigger			N/A
Main Trigger – Falling	stable trigger			N/A

\(^1\) Generator set at −0.6 V.

\(^2\) Generator set at −0.9 V.
Self Test

This procedure uses internal routines to verify that the oscilloscope functions and passes its internal self tests and signal path compensations. It also confirms that the oscilloscope was adjusted properly at the time it was last adjusted. No test equipment or hookups are required.

Equipment Required: None.

Time Required: Approximately 5 minutes.

Prerequisites: Power up the oscilloscope and allow a 20 minute warm-up before doing this procedure.

Procedure:

1. Press UTILITY → System: Diag → Execute → OK Confirm Run Test.
 The internal diagnostics verify proper oscilloscope function. This verification takes about 30 seconds. While it progresses, a variety of test patterns flash on screen. When finished, status messages appear on the screen.

2. Check that the screen reports no failures. If it reports a failure, the instrument has failed the self test. Proceed immediately to the troubleshooting procedure on page 8-29.

3. Press CLEAR MENU.

5. Check that the word Pass appears in the main menu under the Voltage Reference, Timing, and Ext Trig menu labels. (See Figure 6-2.) If any of the labels read Fail, the instrument has failed the self test. Proceed immediately to the system calibration procedure on page 7-2.
Self Test

Figure 6-2: Verifying Adjustments and Signal Path Compensation

6. Press **Signal Path → OK Compensate Signal Paths**. When compensation completes, the status message updates to *Pass* or *Fail* in the main menu.

7. Check that the word **Pass** appears under **Signal Path** in the main menu. (See Figure 6-2.) If **Pass** does not appear, the instrument has failed the performance verification; return it to Tektronix for servicing.
Functional Test

The purpose of this procedure is to confirm that the oscilloscope functions properly.

This procedure verifies functions; that is, it verifies that oscilloscope features operate. It does not verify that they operate within limits.

Therefore, when the instructions that follow call for you to verify that a signal appears on-screen “that is about five divisions in amplitude” or “has a period of about six horizontal divisions,” etc., do NOT interpret the quantities given as limits. Operation within limits is checked in Performance Tests, which begin on page 6-11.

DO NOT make changes to the front-panel settings that are not called out in the procedure. If you make changes to these settings other than those called out in the procedure, you may obtain invalid results. In this case, just redo the procedure from step 1.

NOTE

If the oscilloscope fails any of these checks it has failed the performance verification. To diagnose the causes of a failure, proceed to the troubleshooting procedures on page 8-27.

Equipment Required: One P6109B (TDS 310 and TDS 320) or P6111B (TDS 350) probe (Item 9).

Time Required: Approximately 5 minutes.

Prerequisites: None.

Procedure:

1. Install the probe on CH 1. Connect the probe tip to PROBE COMP on the front panel; leave the probe ground unconnected. (See Figure 6-3.)
2. Press SAVE/RECALL SETUP → Recall Factory Setup → OK Confirm Factory Init.

3. Press AUTOSET.

4. Set the VOLTS/DIV to 1 V. Use the vertical POSITION knob to center the waveform vertically on screen.

5. Set the SEC/DIV to 250 µs.

6. Check that a square-wave probe-compensation signal of about five divisions in amplitude is on screen. (See Figure 6-1 on page 6-2 to locate the readout.)

7. Check that one period of the square wave probe-compensation signal is about four horizontal divisions on screen.

8. Check that the horizontal POSITION knob positions the signal left and right on screen when rotated.

10. Check that the trigger level readout for the main trigger system changes with the trigger LEVEL knob.

11. Check that the trigger-level knob can trigger and untrigger the square-wave signal as you rotate it. (Leave the signal untriggered.)

12. Check that pressing SET LEVEL TO 50% triggers the signal that you just left untriggered.

13. Press ACQUIRE → Mode → Sample.

14. Check that the instrument displays an actively acquiring waveform on-screen. (Note that there is noise present on the peaks of the square wave.)

15. Press the side menu button Peak Detect. Check that the instrument displays an actively acquiring waveform on screen with the noise “peak detected.”
16. Press the side menu button **Envelope**. Check that the instrument displays an actively acquiring waveform on screen with the noise displayed.

17. Press the side menu button **Average**. Check that the instrument displays an actively acquiring waveform on screen with the noise reduced.

18. Press **WAVEFORM OFF** to remove Channel 1 from the display.

19. Press **CH 2** and move the probe to the **CH 2** input.

20. Repeat steps 3 through 17 for Channel 2.

21. Disconnect the probe from the channel input and the **PROBE COMP** terminal.
Functional Test
Performance Tests

The procedures are in three groupings: Signal Acquisition System Checks, Time Base System Checks, and Triggering System Checks. They check all the characteristics that appear in **boldface** type under Warranted Characteristics on page 4-3.

Prerequisites

The tests in this subsection comprise an extensive, valid confirmation of performance and functionality when the following requirements are met:

- The cabinet must be installed.
- You must have performed and passed the procedures under Self Tests, on page 6-5 and those under Functional Tests, on page 6-7.
- The digitizing oscilloscope must have been operating for a warm-up period of at least 20 minutes, and must be operating at an ambient temperature between \(-10\)° C and \(+55\)° C.

Signal Acquisition System Checks

These procedures check signal acquisition system characteristics that are listed as checked under Warranted Characteristics in the Specifications section.

Check DC Voltage Measurement Accuracy

WARNING

Performance of this procedure requires input voltages up to 98 VDC. Contact with live circuits could cause injury or death. Be sure to set the DC calibration generator to 0 volts before connecting, disconnecting, and/or moving the test hookup during the performance of this procedure.

Equipment Required: One dual-banana connector (Item 3), one DC calibration generator (Item 6), and one precision coaxial cable (Item 2).

Time Required: Approximately 35 minutes.

Prerequisites: The oscilloscope must meet the prerequisites listed on page 6-11.

Procedure:

1. Set the output of a DC calibration generator to 0 volts.
2. Connect the output of a DC calibration generator through a dual-banana connector followed by a 50 \(\Omega \) precision coaxial cable to CH 1, as shown in Figure 6-4.

![Figure 6-4: Hookup for DC Voltage Measurement Accuracy Check](image)

4. Press ACQUIRE → Mode → Average 16.

5. Press MEASURE → Select Measurement.

6. Press the side menu button more until the menu label Mean appears in the side menu. Press the side menu button Mean.

7. Set the VOLTS/DIV to one of the settings listed in Table 6-2 that you have not yet checked. (Start with the first setting listed.)

Table 6-2: DC Accuracy

<table>
<thead>
<tr>
<th>Scale Setting</th>
<th>Position Setting (Divs)</th>
<th>Offset Setting</th>
<th>Generator Setting</th>
<th>Accuracy Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 V</td>
<td>+5</td>
<td>+100 V</td>
<td>+98 V</td>
<td>+97.1 V to +98.9 V</td>
</tr>
<tr>
<td>200 mV</td>
<td>+5</td>
<td>+10 V</td>
<td>+8.4 V</td>
<td>+8.28 V to +8.52 V</td>
</tr>
<tr>
<td>50 mV</td>
<td>−5</td>
<td>−1 V</td>
<td>−0.6 V</td>
<td>−581 mV to −619 mV</td>
</tr>
<tr>
<td>50 mV</td>
<td>−5</td>
<td>−1 V</td>
<td>−0.9 V</td>
<td>−881 mV to −919 mV</td>
</tr>
<tr>
<td>Δ at 50 mV</td>
<td></td>
<td></td>
<td></td>
<td>+286 mV to +314 mV</td>
</tr>
<tr>
<td>10 mV</td>
<td>−5</td>
<td>0 V</td>
<td>+60 mV</td>
<td>+54.6 mV to +65.4 mV</td>
</tr>
<tr>
<td>5 mV</td>
<td>0</td>
<td>−1 V</td>
<td>−990 mV</td>
<td>−982 mV to −998 mV</td>
</tr>
</tbody>
</table>
9. Turn the General Purpose Knob to set the vertical position to the setting listed in Table 6-2. The baseline level moves off screen.

10. Press the main menu button Offset.

11. Use the General Purpose Knob to set vertical offset to the setting listed in Table 6-2 for the present vertical scale setting. The baseline level remains off screen.

12. Set the generator to the level and polarity indicated in Table 6-2 for the vertical scale, position, and offset settings you have made. The DC test level should appear on screen. (If it does not return, the DC accuracy check has failed for the present vertical scale setting of the current channel.)

13. Check that the readout for the measurement Mean readout on screen is within the limits listed for the present vertical scale and position/offset/generator settings.

14. Repeat steps 7 through 13 until you have checked all the vertical scale settings listed in Table 6-2. Record the measurements for each of the 50 mV settings.

15. Subtract the second 50 mV measurement from the first and compare the result to the “Δ at 50 mV” limits in Table 6-2.

16. Press WAVEFORM OFF; then, press CH 2.

17. Set the generator output to 0 V.

18. Move the test hookup to the CH 2 input.

19. Repeat steps 5 through 15 for channel 2.

20. Set the generator output to 0 V.

21. Disconnect the cable at the CH 2 input connector.

DC Gain Accuracy

DC gain accuracy is verified by successful completion of the self tests and the DC voltage measurement accuracy (in the previous procedure).

Offset Accuracy

Offset accuracy is verified by successful completion of the Self Tests and the DC voltage measurement accuracy (in the previous procedure).

Check Analog Bandwidth

Equipment Required: One medium-frequency leveled sine wave generator (Item 7), one 50 Ω precision cable (Item 2), and one 50 Ω termination (Item 1).

Time Required: Approximately 20 minutes.

Prerequisites: See page 6-11.
Performance Tests

Procedure:

1. Connect, through a 50 Ω precision cable and a 50 Ω termination, the sine wave output of a medium-frequency leveled sine wave generator to CH 1 (see Figure 6-5). Set the output of the generator to a reference frequency of 50 kHz.

![Figure 6-5: Hookup for Analog Bandwidth Check](image)

1. Press SAVE/RECALL SETUP → Recall Factory Setup → OK Confirm Factory Init.
2. Set the SEC/DIV to 10 μs.
3. Press TRIGGER MENU → Coupling → Noise Rej.
4. Press ACQUIRE → Mode → Average 16.
5. Press MEASURE → High–Low Setup → Min–Max.
6. Press the main menu button Select Measurement. Now press the side menu button more until the menu label Pk-Pk appears in the side menu. Press the side menu button Pk-Pk.
7. Set the VOLTS/DIV to 10 mV.
8. Set the generator output so the CHx Pk-Pk readout equals 60 mV.
9. Press SET LEVEL TO 50% as necessary to trigger the display.
10. Increase the frequency of the generator output to 50 MHz (TDS 310), 100 MHz (TDS 320), or 200 MHz (TDS 350).
11. Set the SEC/DIV to 10 ns (TDS 310), 5 ns (TDS 320), or 2.5 ns (TDS 350).
12. Press SET LEVEL TO 50% as necessary to trigger the display.
13. Check that the Pk-Pk readout on screen (as shown in Figure 6-6) is ≥ 42.5 mV.
Figure 6-6: Measuring Analog Bandwidth

14. When finished checking, set the SEC/DIV back to the 10 μs setting, and set the generator output frequency back to 50 kHz.

15. Press WAVEFORM OFF to remove Channel 1 from the display.

16. Press CH 2 and move the hookup to the CH 2 input.

17. Press TRIGGER MENU → Source → CH 2.

18. Repeat steps 6 through 13 for CH 2.

19. Disconnect the test hook up from the CH 2 input connector.

Time Base System Checks

This procedure checks those characteristics that relate to the Main and Delayed time base system and are listed as checked under Warranted Characteristics in the Specifications section.

Check Long-Term Sample Rate and Delay Time Accuracy

Equipment Required: One time-marker generator (Item 8), one precision coaxial cable, (Item 2) and one 50 Ω termination (Item 1).

Time Required: Approximately 5 minutes.

Prerequisites: See page 6-11.
Performance Tests

Procedure:

1. Connect, through a 50 Ω precision coaxial cable and a 50 Ω termination, the time-mark output of a time-marker generator to CH 1, as shown in Figure 6-7. Set the output of the generator for 10 ms markers.

![Figure 6-7: Hookup for Sample Rate Check](image)

2. Press SAVE/RECALL SETUP → Recall Factory Setup → OK Confirm Factory Init.

3. Set the VOLTS/DIV to 500 mV.

4. Press SET LEVEL TO 50%; use the vertical POSITION knob to center the test signal on screen.

5. Set the SEC/DIV to 1 ms.

6. Press HORIZONTAL MENU → Trigger Position → Set to 10%.

7. Adjust the horizontal POSITION to move the trigger T to the right and on to the screen. Continue to position the trigger T to align it to the center vertical graticule line.

8. Press the main menu button Time Base; then press the side menu button Delayed Only.
9. Set the SEC/DIV of the D (delayed) time base to 1 ms. Then use the General Purpose knob to set delay time to 10 ms.

10. Set the SEC/DIV of the D (delayed) time base to 500 ns.

NOTE

When you change the SEC/DIV in step 10, the delay time readout changes to 10.00001 or 9.99999. This is normal and has no effect on the verification.

11. Check that the rising edge of the marker crosses the center horizontal graticule line at a point within ±2.0 divisions of center graticule.

12. Disconnect the test hookup.

Delta Time Measurement Accuracy

Delta time measurement accuracy is verified by successful completion of the previous procedure.

Trigger System Checks

These procedures check those characteristics that relate to the trigger system and are listed as checked under *Warranted Characteristics* in the *Specifications* section.

Check Edge Trigger Sensitivity, DC Coupled

Equipment Required: One medium-frequency leveled sine wave generator (Item 7), two precision 50 Ω coaxial cables (Item 2), one 50 Ω termination (Item 1), and one BNC T connector (Item 4).

Time Required: Approximately 10 minutes.

Prerequisites: See page 6-11.

Procedure:

1. Press SAVE/RECALL SETUP → Recall Factory Setup → OK Confirm Factory Init.
2. Set the VOLTS/DIV to 500 mV.
3. Set the SEC/DIV to 10 ns.
5. Press ACQUIRE → Mode → Average 16.
6. Connect one 50 Ω cable to the output of the sine wave generator. Attach a BNC T connector to the other end of the cable. Connect a second 50 Ω cable to the other side of the BNC T connector.
Performance Tests

7. Connect the BNC T connector to CH 1; connect the cable to the EXT TRIG input through a 50 Ω termination as shown in Figure 6-8.

![Diagram of Medium Frequency Sine Wave Generator with cable connected to Ext Trigger and 50 Ω Termination]

Figure 6-8: Hookup for Trigger Sensitivity Check

8. Set the generator frequency to 50 MHz (TDS 310), 100 MHz (TDS 320), or 200 MHz (TDS 350).

10. Press the main menu button Select Measurement.

11. Press the side menu button →more← until Amplitude appears in the side menu. Press the side menu button Amplitude.

12. Press SET LEVEL TO 50%.

13. Set the test signal amplitude for about one division on screen. Fine adjust the generator output until the CH 1 Amplitude readout indicates the amplitude is 500 mV. (Readout may fluctuate around 500 mV.)

15. Press SET LEVEL TO 50%. Check that a stable trigger is obtained for the test waveform on both the positive and negative slopes (see Figure 6-9). (Use the side menu to switch between trigger slopes; use the trigger LEVEL knob to stabilize the trigger if required.)
16. Press **WAVEFORM OFF**.

17. Press **CH 2**.

18. Press **TRIGGER MENU → Source → Ch2**.

19. Disconnect the hookup from **CH 1** and connect it to **CH 2**.

20. Set the **VOLTS/DIV** to 500 mV.

21. Repeat steps 14 and 15 for Channel 2.

22. Press **TRIGGER MENU → Source → EXT/10**.

23. Press **MEASURE → Select Measrmnt → Amplitude**.

24. Increase the generator amplitude until the amplitude measurement reads 1.5 V.

25. Repeat steps 14 and 15 for the external trigger.

26. Disconnect the test hookup.

Trigger Level Accuracy, DC Coupled

Trigger level accuracy is verified by the successful completion of the Self Tests and the DC voltage measurement accuracy procedure on page 6-11.
Performance Tests
Adjustment Procedures
Adjustment

This section contains information you need to adjust the TDS 310, TDS 320, and TDS 350. There are only three types of adjustments you can perform on the oscilloscope: the automated and semiautomated adjustments in the system calibration menu, attenuator adjustments, and monitor adjustments.

You should perform the signal path compensation adjustment after servicing your instrument or moving your instrument to a new operating environment (±5°C temperature change). The other adjustment procedures may be necessary if the instrument fails one of the Performance Tests in the previous section.

You should allow the instrument a 20 minute warm-up period before performing any adjustments.

Adjustment Interval — These adjustments should be done once a year.

Equipment Required

Table 7-1: Adjustment Equipment

<table>
<thead>
<tr>
<th>Item Number and Description</th>
<th>Minimum Requirements</th>
<th>Example</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adjustment Tool</td>
<td>0.075 inch slot screwdriver</td>
<td>Tektronix part number 003-1433-01 (standard probe adjustment tool)</td>
<td>Monitor and attenuator adjustments</td>
</tr>
<tr>
<td>2 Termination, 50 Ω</td>
<td>Impedance 50 Ω; connectors: female BNC input, male BNC output</td>
<td>Tektronix part number 011-0049-01</td>
<td>Timing calibration and attenuator adjustment</td>
</tr>
<tr>
<td>3 Cable, Precision Coaxial</td>
<td>50 Ω, 36 in, male to male BNC connectors</td>
<td>Tektronix part number 012-0482-00</td>
<td>Attenuator adjustments and system calibration</td>
</tr>
<tr>
<td>4 Generator, DC Calibration</td>
<td>Variable amplitude to ±10 V; accuracy to 0.05%</td>
<td>Data Precision 8200</td>
<td>Voltage and external trigger calibrations</td>
</tr>
<tr>
<td>5 Generator, Calibration</td>
<td>Variable amplitude; fast rise step</td>
<td>Tektronix PG506A Calibration Generator</td>
<td>Timing calibration and attenuator adjustment</td>
</tr>
</tbody>
</table>
The System Calibration Menu

The oscilloscope has four onboard calibration routines. You can access these routines through the system calibration menu. Use the following procedure.

NOTE

Except for early TDS 320 oscilloscopes, the Voltage, Timing, and External Trigger calibration routines are disabled at the factory. To enable the calibration menus, see Enabling Calibration Menus, on page 8-29.

1. Press **UTILITY**.
2. Press the leftmost main menu button until the pop-up menu shows the **Cal** selection. This calls up the system calibration menu, shown in Figure 7-1.

![Image of the System Calibration Menu]

Figure 7-1: The System Calibration Menu

3. Remove all input signals from the front panel BNC connectors.
4. Press the main menu button **Voltage**. Read the on-screen text before continuing.
5. Press the side menu button **OK Calibrate Voltage Ref**. Connect a DC calibration generator (Item 4) to the CH 1 input through a 50 Ω coaxial cable (Item 3) and follow the instructions on the screen.
6. Press **UTILITY**.
7. Press the main menu button **Signal Path**. Read the on-screen text before continuing.

8. Press the side menu button **OK Compensate Signal Paths**.

9. Wait. The signal path compensation routine takes about four minutes to run.

10. Move the hookup to the **EXT TRIG** input.

11. Press **UTILITY**.

12. Press the main menu button **Ext Trig**. Read the on-screen text before continuing.

13. Press the side menu button **OK Calibrate External Trig**. Follow the instructions on the screen.

14. Disconnect the DC calibration generator and connect the –1 V fast rise output of a calibration generator to the **CH 1** input through a 50 Ω coaxial cable and a 50 Ω termination (Item 2).

15. Set the calibration generator to output a 1 ms, fast rise signal; set the pulse amplitude to 50%.

16. Press **SAVE/RECALL SETUP**. Press the main menu button **Recall Factory Setup**; then press the side menu button **OK Confirm Factory Init**.

17. Press **AUTOSET**. Then adjust the vertical **POSITION** control to center the waveform on the screen so that the trigger arrow is at the center graticule, set the **VOLTS/DIV** to 50 mV, and set the **SEC/DIV** to 250 ns. This should result in a waveform similar to the one shown in Figure 7-2.

![Figure 7-2: Timing Compensation Waveform](image-url)
18. Press **UTILITY**.
19. Press the main menu button **Timing**. Read the on-screen text before continuing.
20. Press the side menu button **OK Compensate Timing**. Follow the instructions on the screen.

Attenuator Adjustment

Use this procedure to adjust the low-frequency compensation of the channel 1 and channel 2 attenuators. You should perform this procedure if your oscilloscope demonstrates gross rounding or overshoot of square-wave input signals or if your instrument fails one of the *Performance Tests* in the previous section.

1. Remove the instrument cabinet as described in the removal procedure on page 8-13.
2. Set the oscilloscope on its left side with its front facing toward you.
3. Power up the oscilloscope and press **SAVE/RECALL SETUP**.
4. Press the main menu button **Factory**; then press the side menu button **OK Confirm Factory Init**.
5. Press **CLEAR MENU**.
6. Connect the high output of a calibration generator (Item 5) to the **CH 1 BNC** through a 50 Ω coaxial cable (Item 3) and a 50 Ω termination (Item 2). (See Figure 7-3.)
7. Set the calibration generator to output a high amplitude, 1 kHz signal. Set the pulse amplitude to 25%.
8. Set the oscilloscope **VOLTS/DIV** to 200 mV, the **SEC/DIV** to 10 μs, and adjust the pulse amplitude for a five division display.
9. Press **SET LEVEL TO 50%**.
10. Use the vertical **POSITION** control to place the top of the waveform near center screen.
11. Set the **VOLTS/DIV** to 100 mV.
12. Use an adjustment tool (Item 1) to adjust the CH 1 10X capacitor for the flattest response. (See Figure 7-3.)
13. Remove the 50 Ω termination from the setup.
14. Set the **VOLTS/DIV** to 2 V.
15. Press **SET LEVEL TO 50%**.
16. Adjust the pulse amplitude for a five-division display.
17. Set the VOLTS/DIV to 1 V.
18. Use an adjustment tool to adjust the CH 1 100X capacitor for the flattest response.
19. Press WAVEFORM OFF, CH 2, and TRIGGER MENU, in that order.
20. Press the main menu button SOURCE; then press the side menu button Ch2.
21. Move the coaxial cable to the CH 2 BNC input, reinstalling the 50 Ω termination.
22. Repeat steps 7 through 18 for channel 2.
23. Reinstall the instrument cabinet.

Monitor Adjustments

There are no set performance requirements for the monitor. You may use this procedure to change monitor parameters whenever the brightness, contrast, horizontal position, or vertical position of the display is not to your liking.

1. Remove the instrument cabinet as described in the removal procedure on page 8-13.
2. Set the oscilloscope bottom-down with its front facing toward you.
3. Turn on the oscilloscope and allow a 20 minute warm-up period.
4. Press DISPLAY.
5. Press the main menu button **Intensity**. Use the side menu to set overall intensity to 100%, **Text/Grat** to bright, and **Waveform** to bright.

6. Locate the brightness potentiometer (see Figure 7-4). Use an adjustment tool (Item 1) to raise the brightness until the background of the screen turns green.

![Diagram of an instrument showing brightness and contrast settings]

Figure 7-4: Monitor Adjustments

7. Now lower the brightness *just beyond the point* where the background fades to black.

8. Locate the contrast potentiometer. Adjust the contrast to your taste.

NOTE

The higher the contrast, the higher the likelihood that prolonged use will cause CRT burn-in.

9. Locate the vertical position potentiometer. Adjust the vertical position until the display is vertically centered on the screen.

10. Locate the horizontal position potentiometer. Adjust the horizontal position until the display is horizontally centered on the screen.
Maintenance
Inspection and Cleaning

Inspection and Cleaning describes how to inspect for dirt and damage on and how to clean the exterior and interior of the oscilloscope. You should perform inspection and cleaning as preventive maintenance. Preventive maintenance, when done regularly, may prevent oscilloscope malfunction and enhance its reliability.

Preventive maintenance consists of visually inspecting and cleaning the oscilloscope and using general care when operating it.

How often to do maintenance depends on the severity of the environment in which you use the oscilloscope. A proper time to perform preventive maintenance is just before oscilloscope adjustment.

Preventing ESD

![CAUTION]

Static discharge can damage any semiconductor component in this oscilloscope.

Precautions

When performing any service which requires internal access to the oscilloscope, adhere to the following precautions to avoid damaging internal modules and their components due to electrostatic discharge (ESD).

1. Minimize handling of static-sensitive modules.
2. Transport and store static-sensitive modules in their static protected containers. Label any package that contains static-sensitive modules.
3. Discharge the static voltage from your body by wearing a grounded antistatic wrist strap while handling these modules. Do service of static-sensitive modules only at a static-free work station.
4. Do not remove the oscilloscope cabinet unless you have met precaution number 3, above. Consider all internal modules static-sensitive.
5. Nothing capable of generating or holding a static charge should be allowed on the work station surface.
6. Handle circuit boards by the edges when possible.
7. Do not slide the modules over any surface.
8. Avoid handling modules in areas that have a floor or work-surface covering capable of generating a static charge.

9. Do not use high-velocity compressed air when cleaning dust from modules.

General Care

The cabinet helps keep dust out of the oscilloscope and it is a major component of its cooling system. It should normally be in place when operating the oscilloscope. The optional oscilloscope front cover protects the front panel and display from dust and damage. Install it when storing or transporting the oscilloscope.

Inspection and Cleaning Procedures

Inspect and clean the oscilloscope as often as operating conditions require. The collection of dirt on components inside can cause them to overheat and breakdown. (Dirt acts as an insulating blanket, preventing efficient heat dissipation.) Dirt also provides an electrical conduction path that could cause an oscilloscope failure, especially under high-humidity conditions.

CAUTION

Avoid the use of chemical cleaning agents that might damage the plastics used in this oscilloscope. Use only deionized water when cleaning the menu buttons or front-panel buttons. Use a 75% isopropyl alcohol solution as a cleaner and rinse with deionized water. Before using any other type of cleaner, consult your Tektronix Service Center or representative.

Avoid the use of high pressure compressed air when cleaning dust from the interior of this instrument. (High pressure air can cause ESD.) Instead, use low pressure compressed air (about 9 psi).

Inspection — Exterior

Using Table 8-1 as a guide, inspect the outside of the oscilloscope for damage, wear, and missing parts. You should thoroughly check oscilloscopes that appear to have been dropped or otherwise abused to verify correct operation and performance. Immediately repair defects that could cause personal injury or lead to further damage to the oscilloscope.
Table 8-1: External Inspection Check List

<table>
<thead>
<tr>
<th>Item</th>
<th>Inspect For</th>
<th>Repair Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet, front panel, and cover</td>
<td>Cracks, scratches, deformations, damaged hardware or gaskets.</td>
<td>defective module.</td>
</tr>
<tr>
<td>Front-panel knobs</td>
<td>Missing, damaged, or loose knobs.</td>
<td>Repair or replace missing or defective knobs.</td>
</tr>
<tr>
<td>Connectors</td>
<td>Broken shells, cracked insulation, and deformed contacts. Dirt in connectors.</td>
<td>defective modules. Clear or wash out dirt.</td>
</tr>
<tr>
<td>Carrying handle and cabinet feet</td>
<td>Correct operation.</td>
<td>defective module.</td>
</tr>
<tr>
<td>Accessories</td>
<td>Missing items or parts of items, bent pins, broken or frayed cables, and damaged connectors.</td>
<td>damaged or missing items, frayed cables, and defective modules.</td>
</tr>
</tbody>
</table>

Cleaning Procedure — Exterior

WARNING

To avoid injury or death, unplug the power cord from line voltage before cleaning the oscilloscope. To avoid getting moisture inside the oscilloscope during external cleaning, use only enough liquid to dampen the cloth or applicator.

1. Remove loose dust on the outside of the oscilloscope with a lint free cloth.
2. Remove remaining dirt with a lint free cloth dampened in a general purpose detergent-and-water solution. Do not use abrasive cleaners.
3. Clean the monitor screen with a lint-free cloth dampened with either isopropyl alcohol or, preferably, a gentle, general purpose detergent-and-water solution.

Inspection — Interior

To access the inside of the oscilloscope for inspection and cleaning, refer to the *Removal and Installation Procedures* in this section.

Inspect the internal portions of the oscilloscope for damage and wear, using Table 8-2 as a guide. You should repair defects immediately.

If you replace any electrical module, perform the adjustment procedures, beginning on page 7-1.
To prevent damage from electrical arcing, ensure that circuit boards and components are dry before applying power to the oscilloscope.

Table 8-2: Internal Inspection Check List

<table>
<thead>
<tr>
<th>Item</th>
<th>Inspect For</th>
<th>Repair Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit boards</td>
<td>Loose, broken, or corroded solder connections. Burned circuit boards. Burned, broken, or cracked circuit-run plating.</td>
<td></td>
</tr>
<tr>
<td>Resistors</td>
<td>Burned, cracked, broken, or blistered condition.</td>
<td></td>
</tr>
<tr>
<td>Solder connections</td>
<td>Cold solder or rosin joints.</td>
<td>Resolder joint and clean with isopropyl alcohol.</td>
</tr>
<tr>
<td>Capacitors</td>
<td>Damaged or leaking cases. Corroded solder on leads or terminals.</td>
<td></td>
</tr>
<tr>
<td>Wiring and cables</td>
<td>Loose plugs or connectors. Burned, broken, or frayed wiring.</td>
<td>Firmly seat connectors. Repair or replace modules with defective wires or cables.</td>
</tr>
<tr>
<td>Chassis</td>
<td>Dents and deformations</td>
<td>Straighten, repair, or replace chassis.</td>
</tr>
</tbody>
</table>

Cleaning Procedure — Interior

If, after doing steps 1 and 2, a module is clean upon inspection, skip the remaining steps.

1. Blow off dust with dry, low-pressure, deionized air (approximately 9 psi).
2. Remove any remaining dust with a lint free cloth dampened in isopropyl alcohol (75% solution) and rinse with warm deionized water. (A cotton-tipped applicator is useful for cleaning in narrow spaces and on circuit boards.)

NOTE

If steps 1 and 2 do not remove all the dust or dirt, the oscilloscope may be spray washed using a solution of 75% isopropyl alcohol by doing steps 3 through 7.

3. Gain access to the parts to be cleaned by removing easily accessible shields and panels (see Removal and Replacement Procedures).
4. Spray wash dirty parts with the isopropyl alcohol and wait 60 seconds for the majority of the alcohol to evaporate.

5. Use hot (120° F to 140° F or 48.9° C to 60° C) deionized water to thoroughly rinse them.

6. Dry all parts with low-pressure, deionized air.

7. Dry all components and assemblies in an oven or drying compartment using low-temperature (125° F to 150° F or 51.7° C to 65.5° C) circulating air.
Inspection and Cleaning
Removal and Replacement

This section contains procedures for removal and installation of all mechanical and electrical modules.

Preparation — Please Read

WARNING

To avoid injury or death, disconnect the power cord from the line voltage source before performing any procedure in this section.

General Instructions

STOP

READ THESE GENERAL INSTRUCTIONS BEFORE REMOVING A MODULE.

First locate the module you want to remove in the exploded views (Figures 11-1 and 11-2 on pages 11-6 and 11-11). Then read *Equipment Required* for a list of the tools needed to remove and install modules in this oscilloscope.

To remove an internal module, you need only remove the oscilloscope cabinet (page 8-13) and then perform the removal procedure for that module. The internal modules are independently removable.

Procedures will refer to “front,” “rear,” “top,” etc. of the oscilloscope; note from Figure 8-1 which sides are referenced.
Figure 8-1: Oscilloscope Orientation

Equipment Required

The following tools are required to completely disassemble the oscilloscope into its modules. The tools required to remove an individual module are listed in the first step of its procedure.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Screwdriver handle</td>
<td>Accepts Torx®-driver bits.</td>
</tr>
<tr>
<td>2</td>
<td>T-15 Torx tip</td>
<td>Torx®-driver bit for T-15 size screw heads.</td>
</tr>
<tr>
<td>3</td>
<td>T-20 Torx tip</td>
<td>Torx®-driver bit for T-20 size screw heads. Used only for removal of the cabinet handle.</td>
</tr>
<tr>
<td>4</td>
<td>Flat-bladed screwdriver</td>
<td>Screwdriver for removing standard-head screws.</td>
</tr>
</tbody>
</table>
Table 8-3: Tools Required for Module Removal (Cont.)

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Nut driver, 5/16 inch</td>
<td>Used for removing earth ground cables.</td>
</tr>
<tr>
<td>6</td>
<td>Angle-tip tweezers</td>
<td>Used for knob and shaft removal.</td>
</tr>
<tr>
<td>7</td>
<td>Slip-Jaw Pliers</td>
<td>Used for removing the front feet from the cabinet.</td>
</tr>
<tr>
<td>8</td>
<td>Wooden Spudger</td>
<td>Used for front EMI gasket removal.</td>
</tr>
<tr>
<td>9</td>
<td>Front Cover</td>
<td>This optional accessory protects the front of the oscilloscope when positioned face down in the removal procedures.</td>
</tr>
<tr>
<td>10</td>
<td>Gloves, lint free, cloth</td>
<td>Used for removing the menu elastomer and menu button flex circuit.</td>
</tr>
</tbody>
</table>

Line Fuse and Line Cord

WARNING

To avoid injury or death, unplug the line cord from the line voltage power source before continuing.

1. Have handy a flat-bladed screwdriver (Item 4).
2. Set the oscilloscope so its bottom is down on the work surface and its rear is facing you.
Figure 8-2: Line Cord Removal

3. Find the line cord on the rear cover. (See Figure 8-2.) Now, remove the line-cord retaining clamp by first unplugging the line cord from its receptacle.

4. Next, grasp both the line cord and the retaining clamp and rotate them 90 degrees counter-clockwise.

5. Pull the line cord and clamp away to complete the removal.

6. Find the fuse drawer beneath the line voltage plug on the rear panel. Now, pry open the drawer with a small flat-bladed screwdriver (Item 4), and remove the line fuse. (See Figure 8-3.)
Figure 8-3: Line Fuse Removal

7. *Reinstallation*: Do in reverse steps 6 through 3 to reinstall the line fuse and then the line cord.

Front Panel Knobs and Shafts

1. Have handy a pair of angled-tip tweezers (Item 6).
2. Set the oscilloscope so its bottom is down on the work surface and its front is facing you.
3. Refer to Figure 8-4. Grasp any knob you wish to remove and pull it straight out from the front panel slightly to create some clearance between the base of the knob and the front panel.
4. Insert the tweezers between the knob and front panel and use them to remove the knob and its shaft.
5. Pull the shaft out of the knob to remove.
6. **Reinstallation:**

a. To reinstall, align the inside of the knob to end of the shaft and push it in until it snaps.

b. Insert the shaft of the assembled knob into its hole in the front panel assembly until it stops.

c. Rotate the knob while lightly pushing inwards until the shaft slips into its receptacle. Push all the way in to seat the knob assembly.

![Diagram of knob and shaft removal]

When reinstalling the knobs, note there are two sizes. Be sure to reinstall the proper size knob in the proper location.

Figure 8-4: Knob and Shaft Removal
Rear Cover, Cabinet, and Cabinet Handle

1. Have handy a screwdriver with a size T-15 Torx® tip (Items 1 and 2).
2. Pull out on both of the hubs on the cabinet handle to unlock it for positioning. While holding the hubs unlocked, rotate the handle towards the bottom of the oscilloscope.
3. Set the oscilloscope so its face is down with its front cover on the work surface and its bottom facing you. Reference Figure 8-5 on page 8-14 as you do the following steps.
4. Remove the four T-15 Torx® screws securing the rear cover to the oscilloscope. Lift off the rear cover. If no other parts are being serviced, skip to the end (step 11) of this procedure.
5. Remove the single T-15 Torx® screw at the left side of the oscilloscope.
6. Lift the cabinet upwards to slide it off the oscilloscope.
7. If no other cabinet parts are being serviced, skip the rest of this procedure.
8. Working from the inside of the cabinet, remove the T-20 Torx® screw securing each handle hub to the cabinet.
9. Working from the outside of the cabinet, grasp the two handle hubs and pull them outward from the cabinet until they are out of the cabinet.
10. While holding the handle hubs pulled out, lift the handle away to remove.
11. Reinstallation:
 a. Do, in reverse order, steps 9 and 8 to reinstall the handle assembly.
 b. Do, in reverse order, steps 6 through 4 to reinstall the cabinet, while observing the following precautions:
 ■ Take care not to bind or snag the cabinet on internal cabling; redress cables as necessary.
 ■ When sliding the cabinet onto the oscilloscope, be sure that the front and rear ridges of the main chassis slide into the grooves at the rear of the cabinet and on the front trim.
 ■ Install the four screws at the rear panel before installing the single screw at the left side of the cabinet.
Figure 8-5: Rear Cover, Cabinet, and Cabinet Handle and Feet Removal
Trim Ring, Menu Elastomer, Menu Buttons, and Front EMI Gaskets

1. Have handy a wooden spudger (Item 8).

2. Set the oscilloscope so its rear is down on the work surface and its bottom is facing you.

 STOP

 DO NOT touch the carbon contact points on the menu elastomer installed in the trim ring. Also, do not touch the contacts on the menu button flex circuit exposed when you remove the trim ring. You should wear clean cloth gloves that are free of lint when handling the menu elastomer or when touching the menu button flex circuit mounted on the front chassis.

3. Grasp the trim ring by its top edge, pry it up, and lift it forward to snap it off the top front of the main chassis (see Figure 8-6).

![Diagram of Trim Ring, Menu Elastomer, and Menu Buttons Removal]

 Trim Ring: To remove, grasp its back edge and press up on its two tab locks. Flex the trim ring upward; then pull it forward. Repeat for the bottom edge of the trim ring.

 Tab Lock

 Menu Button (17)

 Menu Elastomer

 Figure 8-6: Trim Ring, Menu Elastomer, and Menu Buttons Removal

4. Repeat the process, prying on the bottom edge of the trim ring to complete its removal. Lay the trim ring on its face on the work surface.

5. If you are servicing the front EMI gaskets, discard the old ones.

6. If you are servicing the menu elastomer, lift it out of the trim ring.

7. If you are servicing the menu buttons, lift them out of the trim ring.
8. **Reinstallation:**

 a. Insert each button into its hole in the trim ring.

 b. Align the menu elastomer over the menu button holes in the trim ring and press it in to install. Avoid touching the carbon contact points on the elastomer when installing.

 c. Without installing the EMI gaskets, align the trim ring to the front of the chassis and push it on to seat. Be sure that both pairs of flex locks, one pair each at the inside top and bottom of the trim ring, snap over the edge of the chassis.

 d. Lay the oscilloscope so its front cover is on the work surface.

 e. Align an EMI gasket so it lies between any pair of adjacent flex locks along the groove between the cabinet.

 f. Using a wood spudger, push the EMI gasket until it is firmly seated at the bottom of the groove (see Figure 8-7). It should not overlap either flex lock.

 g. Repeat the process just described to install the remaining three gaskets.

![Spudger](image)

Figure 8-7: EMI Gasket Removal and Installation
Front Panel Assembly and Menu Flex Circuit

1. Perform the previous procedure to remove the trim ring.
2. Have handy a flat-bladed screwdriver (Item 4).
3. Set the oscilloscope so its bottom is down on the work surface and its front is facing you.
4. Insert a flat-bladed screwdriver into the slot at the front-right of the chassis (see Figure 8-8). Push inwards to release the snap lock at the right side.
5. Lift the front panel assembly out of the front of the main chassis until you can reach the interconnect cables connecting it to various other modules.
6. Unplug the main board and menu flex-circuit cables from their jacks on the front panel assembly.
7. Finally, lift the front panel assembly out of the front of the main chassis to complete the removal.

Figure 8-8: Front Panel Assembly and Menu Flex Circuit Removal

8. If you are removing the menu flex circuit, pull the circuit away from the front of the main chassis.
9. **Reinstallation:**

 a. If you are replacing the menu flex circuit, perform the following sub-parts:

 - Wipe the front of the chassis using isopropyl alcohol and a clean, lint-free cloth. Let it dry.
 - Find the score line in the adhesive backing and peel the backing off the menu flex circuit.
 - Carefully align the three holes on the menu flex circuit to the locator studs on the front of the main chassis. When the alignment is correct, press the flex circuit against the chassis so it adheres to the chassis.
 - Clean the surface of the menu flex circuit using isopropyl alcohol and a clean, lint-free cloth.

 b. Reconnect the main board and menu flex-circuit cables to the back of the front panel assembly.

 c. Carefully reinsert the front-panel assembly into the main chassis *left side first.*

Main Board Assembly

1. Have handy a screwdriver with a size T-15 Torx® tip (Items 1 and 2).
2. Remove the front trim ring as outlined on page 8-15.
3. Set the oscilloscope so its top side is down on the work surface and its front is facing you.
4. If present, unplug the option board cables.
5. Unplug the power supply cable at the power supply.
6. Unplug the monitor cable at the monitor assembly and power supply; carefully route the cable out through its access hole.
7. Unplug the front panel cable.
8. Using Figure 8-9 as a guide, remove the eight T-15 Torx® screws securing the main board assembly to the chassis.
Figure 8-9: Main Board Removal

9. Lift the main board assembly away from the oscilloscope to complete its removal.

10. Reinstallation: Perform in reverse order steps 9 through 4, reversing the removal instructions in each substep to reinstall the assembly.
Monitor Assembly

1. Have handy a screwdriver with a size T-15 Torx® tip (Items 1 and 2).

2. Set the oscilloscope so its top is down on the work surface, with its front facing you.

 WARNING

 To avoid injury: Use care when handling a monitor. If you break its display tube it may implode, scattering glass fragments with high velocity and possibly injuring you. Wear protective clothing, including safety glasses (preferably a full-face shield). Avoid striking the display tube with or against any object.

 To avoid damaging the monitor: Store the monitor with its display tube face down in a protected location, placing it on a soft, nonabrasive surface to prevent scratching the face plate.

3. Take the precautions outlined in the **WARNING** above. Refer to Figure 8-10 while doing the following steps.

4. Unplug the main board/power supply cable.

5. Remove the three T-15 Torx® screws securing the monitor assembly to the bottom of the main chassis. Rotate the oscilloscope so its bottom is down on the work surface.

 WARNING

 To avoid injury or death, do not unplug the anode from the monitor when removing or replacing the monitor module.

6. Remove the three T-15 Torx® screws securing the monitor assembly to the top of the chassis. (See Figure 8-10 to locate the screws.)

7. Push up on the left top tab lock on the trim ring and pull the left corner of the trim ring forward slightly.

8. Tilt the rear of the monitor assembly upward slightly. Slide the monitor assembly back in the main chassis until it stops (about 2 cm). Now lift it straight up out of the top of the main chassis to complete the removal.

9. While heeding the **WARNING** on monitor handling that immediately precedes step 3 of this monitor removal procedure, store the monitor assembly in a protected location. Place it face down on a soft, nonabrasive surface to prevent scratching the face plate.

10. **Reinstallation:** perform steps 8 through 5 in reverse order to reinstall the monitor assembly.
Figure 8-10: Monitor Assembly Removal
Power Supply Assembly

1. Have handy a screwdriver with a size T-15 Torx® tip (Items 1 and 2).
2. Set the oscilloscope so its right side is down on the work surface, with its bottom facing you.
3. Unplug the main board power cable.
4. Set the oscilloscope so its bottom is down on the work surface, with its front facing to the right.
5. If Option 14 is installed and its printer power cable is used on your instrument, unplug the printer power cable.
6. Unplug the monitor and fan power cables.
7. Remove the chassis ground connector by unbolting it from the main chassis.
8. Remove the two screws connecting the power supply assembly to the main chassis (see Figure 8-11).
Figure 8-11: Low Voltage Power Supply Removal

9. Gently pull the power supply assembly up and out of the main chassis.

10. **Reinstallation:** Perform in reverse order steps 9 through 7, reversing the removal instructions in each substep to reinstall the assembly.
Option 14 Assembly

1. Have handy a screwdriver with a size T-15 Torx® tip (Items 1 and 2).
2. Set the oscilloscope so its top is down on the work surface, with its front facing towards you.
3. Disconnect the main board communications cable (J601) at the main board. Remove the cable from its cable clamp (see Figure 8-12).

NOTE

Early versions of this option did not use the video cable, power cable, or the screws at the rear of the chassis. If your option does not use these parts, skip steps 4, 5, and 7.

4. If used on your option, disconnect the video cable (J703) at the main board.
5. If used on your option, remove the two screws connecting the assembly to the chassis (see Figure 8-12) using a screwdriver with a size T-15 Torx® tip.
6. Set the oscilloscope so its bottom is down on the work surface, with its rear facing towards you.
7. If used on your option, disconnect power cable J4 from the power supply.
8. If your option has the video cable and printer power cable but they are not used on your option, remove the cables from their cable clamp.
9. Using a screwdriver with a size T-15 Torx® tip, remove the two screws on the left side of the assembly (see Figure 8-12).
10. Now remove the two screws on the rear panel that fasten the assembly to the chassis.
11. Pull the assembly towards the front of the instrument and up and out of the chassis. Carefully route the cables through their holes in the chassis.
12. **Reinstallation:** Perform steps 11 through 3 in reverse order.
Figure 8-12: Option 14 Assembly Removal

Fan and Fan Mount

1. Set the oscilloscope so its bottom is down, with its rear facing you.
2. Unplug the *fan* power cable from J3 on the *Power Supply*.
3. Release the two flex locks securing the top of the fan to the fan mount, then lift the fan out from the top of the chassis (see Figure 8-13).
DO NOT proceed unless servicing a broken fan mount or removing that mount for cleaning.

4. Rotate the oscilloscope so the side that houses the fan mount is facing upwards.

Figure 8-13: Fan and Fan Mount Removal

5. Depress the two flex locks to release them (see Figure 6-21).

6. While holding the flex locks released, slide the fan mount so its four retainer lugs slide from their small retainer holes in the chassis into their large release holes.

7. Move the fan mount inward so its retainer lugs are out of the large retainer holes and lift it out of the chassis to remove.

8. Reinstallation:
 a. Perform in reverse order steps 7 through 5 reversing the removal instructions in each substep to reinstall the fan mount. Be sure to seat the fan mount so its two flex locks snap to secure it on the chassis.
 b. Perform in reverse order steps 3 and 2 to reinstall the fan.
Troubleshooting

This section contains information and procedures designed to help you isolate faulty modules in the oscilloscope. If you need to replace a module, use the Removal and Replacement procedures immediately preceding this section.

Onboard Diagnostics

The onboard diagnostics focus on verifying, calibrating, and isolating faulty modules. Use the following procedure to activate the diagnostics.

1. Power up the oscilloscope and allow a 20 minute warm-up period.
2. Press the front panel button UTILITY.
3. Repeatedly press the main menu button System until Diag is highlighted in the pop-up menu. This calls up the diagnostics menu, shown in Figure 8-14.

![Diagnostics Menu Diagram]

Figure 8-14: The Diagnostics Menu

4. Press the main menu button Loop. Select one of the following options from the side menu.
 - Press Once to run the tests once.
 - Press Always to run the tests continuously until you cycle the power.
Troubleshooting

- Press **Until Fail** to run the tests continuously until the instrument fails a test or until you cycle the power.

5. Press the main menu button **Execute**; press the side menu button **Ok Confirm Run Test**.

6. Wait. The diagnostics will take about two minutes to complete. Then the oscilloscope displays pass/fail results for each system.

7. If the onboard diagnostics indicate a failure, reenter the diagnostics menu and press the main menu button **Error Log**.

NOTE

The RS232 Line Snapshot and RS232 Errors are reset at each power-on. For more RS-232 information, see Making Hardcopies on page 3-43 and the TDS 310, TDS 320, & TDS 350 Programmer Manual.

8. Press the side menu button **Display Log** to display the diagnostics error log. The error log contains summary data gathered over the life of the oscilloscope and descriptions of the last 200 errors encountered (see Figure 8-15). The last error in the list is the most recent and/or most important; record this information and continue on to the *Troubleshooting Procedure* in the next section to verify the failure and pinpoint the faulty module.

![Figure 8-15: The Error Log](image)
Enabling Calibration Menus

The Voltage, Timing, and External Trigger calibration menus are disabled at the factory. To enable the calibration menus, perform the following steps.

NOTE

Early versions of the TDS 320 did not contain a cal jumper and did not disable the calibration menus. Do not use this procedure on those instruments.

1. Remove the Line Cord as described on page 8-9.
2. Remove the Rear Cover and Cabinet as described on page 8-13.
3. Set the oscilloscope so its top side is down on the work surface and its front is facing you.
4. Remove cal jumper J609 from the main board (see Figure 8-16). Save the jumper. After calibration and to protect the calibration settings, reinstall the jumper.
5. Reinstallation: Perform in reverse order steps 1 and 2, reversing the removal instructions in each substep.

Figure 8-16: Main Board Cal Jumper

Troubleshooting Procedure

Figures 8-17 through 8-26 are flowcharts of the troubleshooting procedure. Use them to verify module failures indicated by the onboard diagnostics, or use them to troubleshoot an instrument failure not connected with the diagnostics. Begin with Figure 8-17.
NOTE

Before performing the troubleshooting procedure, remove the instrument cabinet (see page 8-13).

Figure 8-17: Primary Troubleshooting Procedure
This procedure assumes that the oscilloscope is up and running and you can read the display.

Does the Error Log report any errors?

Select the extended diagnostics menu and run all tests.

Are any failures reported?

Yes

The oscilloscope is ok.

No

Check the last failure on the list.

Is it an ACQ, CPU, or DSP failure?

Yes

Replace the Main board.

No

Is it a front panel error?

Yes

Perform the Front Panel/Processor troubleshooting procedure (Figure 8-19).

No

Is it an option error?

Yes

The problem is most likely the Option module. Replace module.

No

Run all the extended diagnostics.

Does the display report any errors?

Yes

Done.

No

Done.

Figure 8-18: Module Isolation Troubleshooting Procedure
Troubleshooting

Use this procedure to determine if a problem is caused by the Front Panel module or the Main board.

Press the ON/STBY button to the on position.

Is the ON/STBY button working correctly?

Yes

No

Do all the Front Panel LEDs turn on and then off a short time later?

Yes

No

Do the Front Panel controls operate correctly?

Yes

No

Replace the Front Panel Module.

Is the bezel flex circuit securely installed in J40 and is the flex circuit securely mounted on the chassis?

Yes

No

Securely install and or replace the bezel flex circuit.

Is the Front Panel LEDs turn on at all?

Yes

No

Do there 5 V on pins 2 and 4 of J30?

Yes

No

Securely install and or replace the bezel flex circuit.

Is the Front Panel cable securely installed at J30 and J603 and is the cable ok?

Yes

No

Replace the Main board.

Replace the Front Panel module.

Figure 8-19: Front Panel/Processor Troubleshooting Procedure
Use this procedure to troubleshoot display problems.

Is the display legible but the horizontal and/or vertical display not stable?

Yes

Does pin 7 of J901 have a signal with the same levels as Figure 8-21?

No

Power off the oscilloscope and disconnect the cable from J901 on the Monitor module. Turn the power back on.

No

Does pin 5 of the cable have a signal similar to Figure 8-23?

No

Replace the Main board.

Yes

Replace the Monitor module.

Is pin 10 of J901 at +15 V?

No

Replace the Low Voltage Power Supply module.

Is pin 1 of J2 on the LVPS module at 15 V?

No

Yes

Replace the Monitor module.

Figure 8-20: Monitor Troubleshooting Procedure
Figure 8-21: J901 Pin 7 Signal

Figure 8-22: J901 Pin 2 Signal
Figure 8-23: J901 Pin 5 Signal
Use this procedure to determine if a problem is caused by the Low Voltage Power Supply.

Press the ON/STBY button a few times and listen for a relay clicking sound.

Do you hear the clicking?

Yes

No

Is the fuse blown?

Yes

Replace fuse. Does fuse blow again?

No

Does oscilloscope work?

Yes

No

Remove cable from J1 on the LVPS module.

Is there 1 to 1.5V on pin 13 of the connector?

No

Yes

The LVPS module is ok. Perform the Front Panel/Processor troubleshooting procedure.

The LVPS module is ok. Perform the supply overload troubleshooting procedure (Figure 8-26).

Replace LVPS module.

Power off the oscilloscope and disconnect J2 from the LVPS module. Power back on.

Does the oscilloscope power up and are the secondary voltages (Table 8-4) ok?

Yes

No

Are the secondary voltages ok?

Yes

Replace the Monitor module.

No

Power off the oscilloscope and disconnect J4 from the LVPS module. Power back on.

Are the secondary voltages ok?

Yes

Replace the option module.

No

Disconnect the power cord. Disconnect J1 from the LVPS module. Reconnect power.

Are the secondary voltages ok?

Yes

No

Figure 8-24: Power Supply Troubleshooting Procedure
Table 8-4: Power Supply Secondary Voltages

<table>
<thead>
<tr>
<th>Location (See Figure 8-25)</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 pin 2</td>
<td>+8.38 V</td>
<td>+8.82 V</td>
</tr>
<tr>
<td>J1 pins 5 and 6</td>
<td>+4.87 V</td>
<td>+5.13 V</td>
</tr>
<tr>
<td>J1 pin 8</td>
<td>+4.87 V</td>
<td>+5.13 V</td>
</tr>
<tr>
<td>J1 pin 10</td>
<td>−8.38 V</td>
<td>−8.82 V</td>
</tr>
<tr>
<td>J1 pin 11</td>
<td>−4.87 V</td>
<td>−5.13 V</td>
</tr>
<tr>
<td>J1 pin 13, ON</td>
<td>+0.991 V</td>
<td>+1.137 V</td>
</tr>
<tr>
<td>J1 pin 13, STBY</td>
<td>+1.272 V</td>
<td>+1.406 V</td>
</tr>
<tr>
<td>J2 pin 1</td>
<td>+13.80 V</td>
<td>+15.75 V</td>
</tr>
<tr>
<td>J3 pin 1, fan connected</td>
<td>+10.20 V</td>
<td>+13.80 V</td>
</tr>
<tr>
<td>J3 pin 1, fan disconnected</td>
<td>+13.80 V</td>
<td>+15.75 V</td>
</tr>
<tr>
<td>J4 pin 1</td>
<td>+13.80 V</td>
<td>+15.75 V</td>
</tr>
</tbody>
</table>
Figure 8-25: Power Supply Connector Locations
Use this procedure to troubleshoot a Supply Overload problem.

WARNING

Turn the oscilloscope off before disconnecting a cable.

Disconnect J603 from the Main board.

Does supply work?
Yes → Replace the Front Panel module.
No → Disconnect J4 from the Main board.

Does supply work?
Yes → Replace the Option module.
No → Disconnect J601 from the Main board.

Does supply work?
Yes → Replace the Option module.
No → Replace the Main board.

Figure 8-26: Supply Overload Troubleshooting Procedure
Use this procedure to determine if a problem is caused by the Main board or the Option Module.

Connect the printer power cable to the printer power connector.

Is the voltage at the end of the connector > 6.5 V?

Yes

No

Is connector P4 secured to the power supply?

No

Secure the connector.

Yes

Connect a printer to the Centronics port and the printer power source. Set up the Utility I/O menu for Hcp Port Centronics and Hcp Format to match the printer.

Replace the I/O interface.

Press the HARDCOPY button.

Does the printer print a copy of the screen?

Yes

Connect a VGA compatible monitor the the I/O interface VIDEO connector.

No

Is connector P60 secured to the Main board?

No

Secure the connectors.

Yes

Replace the I/O interface.

Does the printer print a copy of the screen?

No

Replace the Main board.

Yes

Is the display on the external monitor stable and legible?

Yes

Replace the I/O interface.

No

Is connector P703 secured to the Main board?

No

Secure the connectors.

Yes

Replace the Main board.

No

Is the display on the external monitor stable and legible?

Yes

The I/O interface module is OK.

No

Figure 8-27: I/O Interfaces Option Troubleshooting Procedure
Repackaging Instructions

If you ship the oscilloscope, pack it in the original shipping carton and packing material. If the original packing material is not available, package the instrument as follows:

1. Obtain a corrugated cardboard shipping carton with inside dimensions at least 15 cm (6 in) taller, wider, and deeper than the oscilloscope. The shipping carton must be constructed of cardboard with 170 kg (375 pound) test strength.

2. If you are shipping the oscilloscope to a Tektronix field office for repair, attach a tag to the oscilloscope showing the instrument owner and address, the name of the person to contact about the instrument, the instrument type, and the serial number.

3. Wrap the oscilloscope with polyethylene sheeting or equivalent material to protect the finish.

4. Cushion the oscilloscope in the shipping carton by tightly packing dunnage or urethane foam on all sides between the carton and the oscilloscope. Allow 7.5 cm (3 in) on all sides, top, and bottom.

5. Seal the shipping carton with shipping tape or an industrial stapler.
Repackaging Instructions
Electrical Parts List
Replaceable Module Assemblies

The modules that make up the TDS 310, TDS 320, and TDS 350 are listed in Section 11, *Replaceable Mechanical Parts*, beginning on page 11-1.
Replaceable Module Assemblies
Diagrams
Diagrams

The TDS 310, TDS 320, and TDS 350 block/interconnect diagram is in Figure 5-1 on page 5-2.
Mechanical Parts List
Replaceable Parts

This section contains a list of the modules that are replaceable for the TDS 310, TDS 320, and TDS 350. Use this list to identify and order replacement parts.

Parts Ordering Information

Replacement parts are available from or through your local Tektronix, Inc. service center or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available and to give you the benefit of the latest circuit improvements. Therefore, when ordering parts, it is important to include the following information in your order:

- Part number
- Instrument type or model number
- Instrument serial number
- Instrument modification number, if applicable

If a part you order has been replaced with a different or improved part, your local Tektronix service center or representative will contact you concerning any change in the part number.

Change information, if any, is located at the rear of this manual.

Module Replacement

TDS 300 Series oscilloscopes are serviced by module replacement. There are three options you should consider:

- **Module Exchange.** In some cases you may exchange your module for a remanufactured module. These modules cost significantly less than new modules and meet the same factory specifications. For more information about the module exchange program, call 1-800-TEKWIDE, ext. 6630.

- **Module Repair.** You may ship your module to us for repair, after which we will return it to you.

- **New Modules.** You may purchase new replacement modules in the same way as other replacement parts.
Using the Replaceable Parts List

The tabular information in the Replaceable Parts List is arranged for quick retrieval. Understanding the structure and features of the list will help you find all the information you need for ordering replacement parts.

Item Names

In the Replaceable Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, U.S. Federal Cataloging Handbook H6–1 can be used where possible.

Abbreviations

Abbreviations conform to American National Standards Institute (ANSI) standard Y1.1.
CROSS INDEX – MFR. CODE NUMBER TO MANUFACTURER

<table>
<thead>
<tr>
<th>Mfr. Code</th>
<th>Manufacturer</th>
<th>Address</th>
<th>City, State, Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3109</td>
<td>FELLER</td>
<td>72 VERONICA AVE UNIT 4</td>
<td>SUMMERSET NJ 08873</td>
</tr>
<tr>
<td>S4246</td>
<td>JAPAN SERVO CO LTD</td>
<td>7 KANDA</td>
<td>TOKYO JAPAN</td>
</tr>
<tr>
<td>TK0435</td>
<td>LEWIS SCREW CO</td>
<td>4300 S RACINE AVE</td>
<td>CHICAGO IL 60609 – 3320</td>
</tr>
<tr>
<td>TK0946</td>
<td>SAN—O INDUSTRIAL CORP</td>
<td>170 WILBUR PL</td>
<td>BAHEMIA LONG ISLAND NY 11716</td>
</tr>
<tr>
<td>TK1163</td>
<td>POLYCAST INC</td>
<td>9898 SW TIGARD ST</td>
<td>TIGARD OR 97223</td>
</tr>
<tr>
<td>TK1499</td>
<td>AMLAN INC</td>
<td>97 THORNWOOD RD</td>
<td>STAMFORD CT 06903 – 2617</td>
</tr>
<tr>
<td>TK1908</td>
<td>PLASTIC MOLDED PRODUCTS</td>
<td>4336 SO ADAMS</td>
<td>TACOMA WA 98409</td>
</tr>
<tr>
<td>TK1918</td>
<td>SHIN—ETSU POLYMER AMERICA INC</td>
<td>1181 NORTH 4TH ST</td>
<td>SAN JOSE CA 95112</td>
</tr>
<tr>
<td>TK1935</td>
<td>ACCRA—FAB INC</td>
<td>11007 NE 37TH CIRCLE</td>
<td>VANCOUVER WA 98682</td>
</tr>
<tr>
<td>TK2430</td>
<td>ZYTEC CORP</td>
<td>1425 EAST BRIDGE ST</td>
<td>REDWOOD FALLS MN 56283</td>
</tr>
<tr>
<td>TK2193</td>
<td>PHOTO AND SOUND</td>
<td>820 NW 18TH AVENUE</td>
<td>PORTLAND OR 97209</td>
</tr>
<tr>
<td>TK2432</td>
<td>UNION ELECTRIC</td>
<td>15/F #1, FU—SHING N. ROAD</td>
<td>TAIPEI, TAIWAN ROC</td>
</tr>
<tr>
<td>TK2500</td>
<td>SOLECTEK ACCESSORIES CORP</td>
<td>6370 NANCY RIDGE DR SUITE 109</td>
<td>SAN DIEGO CA 92121</td>
</tr>
<tr>
<td>0JR05</td>
<td>TRIQUEST CORP</td>
<td>3000 LEWIS AND CLARK HWY</td>
<td>VANCOUVER WA 98661 – 2999</td>
</tr>
<tr>
<td>0KB25</td>
<td>MORELLIS Q & D PLASTICS</td>
<td>1812 16TH AVE</td>
<td>FOREST GROVE OR 97116</td>
</tr>
<tr>
<td>0KB01</td>
<td>STAUFFER SUPPLY</td>
<td>810 SE SHERMAN</td>
<td>PORTLAND OR 97214</td>
</tr>
<tr>
<td>00779</td>
<td>AMP INC</td>
<td>2800 FULLING MILL PO BOX 3608</td>
<td>HARRISBURG PA 17105</td>
</tr>
<tr>
<td>07416</td>
<td>NELSON NAME PLATE CO</td>
<td>3191 CASITAS</td>
<td>LOS ANGELES CA 90039 – 2410</td>
</tr>
<tr>
<td>18565</td>
<td>CHOMERICS INC</td>
<td>77 DRAGON COURT</td>
<td>WOBURN MA 01801 – 1039</td>
</tr>
<tr>
<td>34416</td>
<td>PARSONS MFG CORP</td>
<td>1055 O'BRIAN DR</td>
<td>MENLO PARK CA 94025 – 1408</td>
</tr>
<tr>
<td>52152</td>
<td>MINNESOTA MINING AND MFG CO INDUSTRIAL SPECIALTIES DIV</td>
<td>3M CENTER</td>
<td>ST PAUL MN 55144 – 0001</td>
</tr>
<tr>
<td>6D224</td>
<td>TRI—TEC ENGINEERING CORP</td>
<td>13130 S NORMANDIE</td>
<td>GARDENA CA 90249 – 2128</td>
</tr>
<tr>
<td>80009</td>
<td>TEKTRONIX INC</td>
<td>14150 SW KARL BRAUN DR PO BOX 500</td>
<td>BEAVERTON OR 97077 – 0001</td>
</tr>
<tr>
<td>86928</td>
<td>SEASTROM MFG CO INC</td>
<td>701 SONORA AVE</td>
<td>GLENDALE CA 91201 – 2431</td>
</tr>
</tbody>
</table>
Replaceable Parts

<table>
<thead>
<tr>
<th>Fig. & Index No.</th>
<th>Tektronix Part No.</th>
<th>Serial No. Effective</th>
<th>Qty</th>
<th>12345</th>
<th>Name & Description</th>
<th>Mfr. Code</th>
<th>Mfr. Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11−1−1</td>
<td>334−8202−0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>MARKER,IDENT:MKD HANDLE</td>
<td>80009</td>
<td>334820200</td>
</tr>
<tr>
<td>−2</td>
<td>390−1109−0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>CABINET,SCOPE:ALUMINUM,TEK BLUE</td>
<td>TK1935</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td>−3</td>
<td>367−0289−0</td>
<td>2</td>
<td>1</td>
<td></td>
<td>HANDLE,CARRYING:13.855,DTT</td>
<td>80009</td>
<td>367028902</td>
</tr>
<tr>
<td>−4</td>
<td>212−0144−0</td>
<td>0</td>
<td>2</td>
<td></td>
<td>SCREW,TPG,TF:8−16 X 0.562 L,PLASTITE</td>
<td>0KB01</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td>−5</td>
<td>348−0659−0</td>
<td>0</td>
<td>2</td>
<td></td>
<td>FOOT,CABINET:BLACK POLYURETHANE</td>
<td>0JR05</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td>−6</td>
<td></td>
<td>−</td>
<td>1</td>
<td></td>
<td>CABINET,SCOPE:ALUMINUM,TEK BLUE (P/O 390−1109−XX ASSEMBLY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>−7</td>
<td>348−0764−0</td>
<td>4</td>
<td>1</td>
<td></td>
<td>SHLD GSKT,ELEK:0.125 X 0.188,WIRE MESH</td>
<td>18565</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td>−8</td>
<td>334−8324−0</td>
<td>0</td>
<td>1</td>
<td>MARKER,IDENT:MKD REAR PWR SPLY,WARNING</td>
<td>80009</td>
<td>334832400</td>
<td></td>
</tr>
<tr>
<td>−9</td>
<td>334−8322−0</td>
<td>B010100 B020099</td>
<td>1</td>
<td></td>
<td>MARKER,IDENT:MKD OPTION (TDS310/350 ONLY--OPTION 02 ONLY)</td>
<td>80009</td>
<td>334832201</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>MARKER,IDENT:MKD OPTION (TDS310/350 ONLY--OPTION 02 ONLY)</td>
<td>80009</td>
<td>334832200</td>
</tr>
<tr>
<td>−10</td>
<td>161−0230−0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>CABLE ASSY,PWR:,.318 AWG,92 L,SVT,TAN (STANDARD ACCESSORY)</td>
<td>TK2432</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td>−11</td>
<td>343−1213−0</td>
<td>0</td>
<td>1</td>
<td>CLAMP,PWR CORD:POLYIMIDE</td>
<td>TK1163</td>
<td>ORDER BY DESC</td>
<td></td>
</tr>
<tr>
<td>−12</td>
<td>211−0691−0</td>
<td>0</td>
<td>4</td>
<td>SCREW,MACHINE:6−32 X 0.625,PNH,STL</td>
<td>0KB01</td>
<td>ORDER BY DESC</td>
<td></td>
</tr>
<tr>
<td>−13</td>
<td>200−3971−0</td>
<td>B010100 B020099</td>
<td>1</td>
<td>COVER,REAR:W/FEET AND LABELS (TDS310/350 ONLY)</td>
<td>80009</td>
<td>200397104</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>COVER,REAR:W/FEET AND LABELS (TDS310/350 ONLY)</td>
<td>80009</td>
<td>200397105</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>COVER,REAR:W/FEET AND LABELS (TDS320 ONLY)</td>
<td>80009</td>
<td>200397104</td>
<td></td>
</tr>
<tr>
<td>−14</td>
<td>211−0730−0</td>
<td>0</td>
<td>1</td>
<td>SCR,ASSEM WSHR:6−32 X 0.375,PNH,STL CD PL</td>
<td>0KB01</td>
<td>ORDER BY DESC</td>
<td></td>
</tr>
<tr>
<td>−15</td>
<td>174−2598−0</td>
<td>0</td>
<td>1</td>
<td>CA ASSY,SP,ELEC:FRONT PANEL</td>
<td>80009</td>
<td>174259800</td>
<td></td>
</tr>
<tr>
<td>Fig. & Index No.</td>
<td>Tektronix Part No.</td>
<td>Effective Date</td>
<td>Serial No. Discont</td>
<td>Qty</td>
<td>12345</td>
<td>Name & Description</td>
<td>Mfr. Code</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----</td>
<td>-------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>-16</td>
<td>348-1258-0</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>SHLD,GASKET,ELE:2 LAYER,0.094 X 0.188 X 8.750</td>
<td>80009</td>
</tr>
<tr>
<td>-17</td>
<td>672-1376-0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:FRONT PANEL MODULE</td>
<td>80009</td>
</tr>
<tr>
<td>-18</td>
<td>384-1689-0</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>SHAFT EXTENDER:ACETAL</td>
<td>80009</td>
</tr>
<tr>
<td>-19</td>
<td>020-2036-0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>ACCESSORIES KIT:KNOBS</td>
<td>80009</td>
</tr>
<tr>
<td>-20</td>
<td>200-3232-0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>COVER.FRON ABS (OPTIONAL ACCESSORY)</td>
<td>TK1908</td>
</tr>
<tr>
<td>-21</td>
<td>334-8323-0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>MARKER,IDENT:MKD TDS320</td>
<td>80009</td>
</tr>
<tr>
<td></td>
<td>334-8719-0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>MARKER,IDENT:MKD TDS350</td>
<td>80009</td>
</tr>
<tr>
<td></td>
<td>334-8737-0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>MARKER,IDENT:MKD TDS310</td>
<td>80009</td>
</tr>
<tr>
<td>-22</td>
<td>101-0140-0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>TRIM,DECORATIVE:FRONT</td>
<td>80009</td>
</tr>
<tr>
<td>-23</td>
<td>366-2164-0</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td>PUSH BUTTON:SMOKE TAN</td>
<td>80009</td>
</tr>
<tr>
<td>-24</td>
<td>260-2539-0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>SWITCH SET:BEZEL</td>
<td>TK1918</td>
</tr>
<tr>
<td>-25</td>
<td>259-0086-0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>FLEX CIRCUIT:BEZEL BUTTON</td>
<td>07416</td>
</tr>
</tbody>
</table>
Figure 11-1: Cabinet and Front Panel Assembly
Replaceable Parts

<table>
<thead>
<tr>
<th>Fig. & Index No.</th>
<th>Tektronix Part No.</th>
<th>Serial No. Effective Date</th>
<th>Quantity</th>
<th>12345</th>
<th>Name & Description</th>
<th>Mfr. Code</th>
<th>Mfr. Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-2-1</td>
<td>426-2436-0</td>
<td>B010100</td>
<td>1</td>
<td></td>
<td>FRAME,CRT FLTR,POLYCARBONATE (TDS310/350 ONLY)</td>
<td>TK1163</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B020100</td>
<td>1</td>
<td></td>
<td>FRAME,CRT FLTR,POLYCARBONATE (TDS310/350 ONLY)</td>
<td>TK1163</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td></td>
<td>426-2436-0</td>
<td>B010100</td>
<td>1</td>
<td></td>
<td>FRAME,CRT FLTR,POLYCARBONATE (TDS310/350 ONLY)</td>
<td>TK1163</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B030100</td>
<td>1</td>
<td></td>
<td>FRAME,CRT FLTR,POLYCARBONATE (TDS320 ONLY)</td>
<td>TK1163</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td></td>
<td>426-2436-0</td>
<td>1</td>
<td>13</td>
<td>SCREW,TPIG,TR:6-32 X 0.437 TAPRITE,PNH,STL</td>
<td>0KB01</td>
<td>ORDER BY DESC</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>213-0882-0</td>
<td>0</td>
<td>640-0079-0</td>
<td>1</td>
<td>DISPLAY MODULE:7 INCH,480X 640 PIXEL</td>
<td>80009</td>
<td>64007901</td>
</tr>
<tr>
<td>-3</td>
<td>426-2426-0</td>
<td>0</td>
<td>1</td>
<td>FRAME,FAN MTG,POLYCARBONATE</td>
<td>80009</td>
<td>426242600</td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>119-1770-0</td>
<td>4</td>
<td>1</td>
<td>FAN ASSEMBLY:12VDC,1.72W,35CFM W/CONN</td>
<td>S4246</td>
<td>CUDC12D4</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>119-5029-0</td>
<td>B010100</td>
<td>1</td>
<td>POWER SUPPLY:IN 90-280 VAC,45-440HZ,100W</td>
<td>TK2430</td>
<td>119-5029-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B020100</td>
<td>1</td>
<td>POWER SUPPLY:IN 90-280 VAC,45-440HZ,100W</td>
<td>TK2430</td>
<td>119-5029-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>119-5029-0</td>
<td>B010100</td>
<td>1</td>
<td>POWER SUPPLY:IN 90-280 VAC,45-440HZ,100W</td>
<td>TK2430</td>
<td>119-5029-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B030100</td>
<td>1</td>
<td>POWER SUPPLY:IN 90-280 VAC,45-440HZ,100W</td>
<td>TK2430</td>
<td>119-5029-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>119-5029-0</td>
<td>2</td>
<td>1</td>
<td>FUSE, CARTRIDGE:5X20MM,3.5A,250V,50MS</td>
<td>TK0946</td>
<td>EQ-3.5A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>159-0277-0</td>
<td>1</td>
<td>FUSE, CARTRIDGE:5X20MM,3A,250V,5SEC</td>
<td>80009</td>
<td>159027700</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>210-0457-0</td>
<td>0</td>
<td>1</td>
<td>NUT,PL,ASSEM WA:6-32 X 0.312,STL CD PL</td>
<td>TK0435</td>
<td>ORDER BY DESC</td>
<td></td>
</tr>
<tr>
<td>-9</td>
<td>441-1982-0</td>
<td>0</td>
<td>1</td>
<td>CHASSIS ASSY:ALUMINUM</td>
<td>80009</td>
<td>441198200</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>210-0056-0</td>
<td>0</td>
<td>2</td>
<td>WASHER,LOCK:#10 SPLIT,0.047 THK,SI BRZ NP</td>
<td>86928</td>
<td>ORDER BY DESC</td>
<td></td>
</tr>
<tr>
<td>-11</td>
<td>213-1079-0</td>
<td>0</td>
<td>4</td>
<td>JACKSCREW:4-40 X 0.120 INT THD,4-40 X EXT</td>
<td>00779</td>
<td>745563-2</td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td>213-1061-0</td>
<td>0</td>
<td>2</td>
<td>JACKSCREW:GPIB,MALE 6-32 THD 0.32 L</td>
<td>00779</td>
<td>554043-3</td>
<td></td>
</tr>
<tr>
<td>-13</td>
<td>407-4196-0</td>
<td>0</td>
<td>1</td>
<td>BRACKET,STD:ALUMINUM (STANDARD)</td>
<td>80009</td>
<td>407419600</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B020100</td>
<td>1</td>
<td>BRACKET,OPTION:0.050 AL ALLOY (TDS310/350 ONLY–OPTION 14 ONLY)</td>
<td>80009</td>
<td>407429300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>407-4293-0</td>
<td>0</td>
<td>1</td>
<td>BRACKET,OPTION:0.050 AL ALLOY (TDS320 ONLY–OPTION 14 ONLY)</td>
<td>80009</td>
<td>407429300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>407-4293-0</td>
<td>B030100</td>
<td>1</td>
<td>BRACKET,OPTION:0.050 AL ALLOY (TDS320 ONLY–OPTION 14 ONLY)</td>
<td>80009</td>
<td>407429300</td>
<td></td>
</tr>
<tr>
<td>Fig. & Index No.</td>
<td>Tektronix Part No.</td>
<td>Serial No. Effective</td>
<td>Serial No. Discount</td>
<td>Qty</td>
<td>12345</td>
<td>Name & Description</td>
<td>Mfr. Code</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>-------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>-14</td>
<td>671–2645–0</td>
<td>0</td>
<td>B010100</td>
<td>B020099</td>
<td>1</td>
<td>CIRCUIT BD ASSY:OPTION (TDS310/350 ONLY—OPTION 14 ONLY)</td>
<td>80009</td>
</tr>
<tr>
<td>-15</td>
<td>343–0775–0</td>
<td>0</td>
<td></td>
<td>2</td>
<td></td>
<td>CLIPSPR TNSN:</td>
<td>52152</td>
</tr>
<tr>
<td>-16</td>
<td>343–0549–0</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td>STRAP:TIEDOWN,E:0.098W X 4.0L, ZYTEL</td>
<td>TK1499</td>
</tr>
<tr>
<td>-17</td>
<td>348–0150–0</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td>GROMMET,PLASTIC:DK GRAY,U–SHAPE,0.66 ID</td>
<td>0KBZ5</td>
</tr>
<tr>
<td>-18</td>
<td>174–2598–0</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td>CA ASSY,SP:FLAT FLEX,16,26AWG,13.7L</td>
<td>80009</td>
</tr>
<tr>
<td>11–1–19</td>
<td>671–2468–0</td>
<td>0</td>
<td>B010100</td>
<td>B011094</td>
<td>1</td>
<td>CIRCUIT BD ASSY:MAIN (TDS320 ONLY)</td>
<td>80009</td>
</tr>
<tr>
<td>671–2468–0</td>
<td>1</td>
<td>B011095</td>
<td>B011103</td>
<td></td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN (TDS320 ONLY)</td>
<td>80009</td>
</tr>
<tr>
<td>671–2468–0</td>
<td>1</td>
<td>B011104</td>
<td>B011115</td>
<td></td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN (TDS320 ONLY)</td>
<td>80009</td>
</tr>
<tr>
<td>671–2468–0</td>
<td>0</td>
<td>B011116</td>
<td>B011237</td>
<td></td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN (TDS320 ONLY)</td>
<td>80009</td>
</tr>
<tr>
<td>671–2468–0</td>
<td>1</td>
<td>B011238</td>
<td>B011310</td>
<td></td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN (TDS320 ONLY)</td>
<td>80009</td>
</tr>
<tr>
<td>671–2468–0</td>
<td>1</td>
<td>B011311</td>
<td>B021867</td>
<td></td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN (TDS320 ONLY)</td>
<td>80009</td>
</tr>
<tr>
<td>671–2468–0</td>
<td>0</td>
<td>B021868</td>
<td>B032905</td>
<td></td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN (TDS320 ONLY)</td>
<td>80009</td>
</tr>
<tr>
<td>671–2468–0</td>
<td>1</td>
<td>B032905</td>
<td>B034100</td>
<td></td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN (TDS320 ONLY)</td>
<td>80009</td>
</tr>
<tr>
<td>671–3183–0</td>
<td>0</td>
<td>B040100</td>
<td></td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN (TDS320 ONLY)</td>
<td>80009</td>
</tr>
<tr>
<td>671–3183–0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>671–3183–0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>671–3183–0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Replaceable Parts

<table>
<thead>
<tr>
<th>Fig. & Index No.</th>
<th>Tektronix Part No.</th>
<th>Serial No. Effective</th>
<th>Qty</th>
<th>12345</th>
<th>Name & Description</th>
<th>Mfr. Code</th>
<th>Mfr. Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>671−3103−0</td>
<td>60</td>
<td>B010100</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671310300</td>
</tr>
<tr>
<td>671−3103−0</td>
<td>1</td>
<td>B010140</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671310301</td>
</tr>
<tr>
<td>671−3103−0</td>
<td>2</td>
<td>B020100</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671310302</td>
</tr>
<tr>
<td>671−3103−0</td>
<td>3</td>
<td>B031112</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671310303</td>
</tr>
<tr>
<td>671−3103−0</td>
<td>4</td>
<td>B032157</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671310304</td>
</tr>
<tr>
<td>671−3103−0</td>
<td>5</td>
<td>B040100</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671310305</td>
</tr>
<tr>
<td>671−3178−0</td>
<td>0</td>
<td>B010140</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671317800</td>
</tr>
<tr>
<td>671−3178−0</td>
<td>1</td>
<td>B020100</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671317801</td>
</tr>
<tr>
<td>671−3178−0</td>
<td>2</td>
<td>3030134</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671317802</td>
</tr>
<tr>
<td>671−3178−0</td>
<td>3</td>
<td>B032131</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671317803</td>
</tr>
<tr>
<td>671−3178−0</td>
<td>4</td>
<td>B040100</td>
<td>1</td>
<td></td>
<td>CIRCUIT BD ASSY:MAIN</td>
<td>80009</td>
<td>671317804</td>
</tr>
<tr>
<td>-20</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td>BRACKET:ALUMINUM</td>
<td>80009</td>
<td>407424700</td>
</tr>
</tbody>
</table>
Figure 11-2: CRT, Power Supply, and Circuit Boards
Replaceable Parts

<table>
<thead>
<tr>
<th>Fig. & Index No.</th>
<th>Tektronix Part No.</th>
<th>Serial No. Effective</th>
<th>Qty</th>
<th>12345</th>
<th>Name & Description</th>
<th>Mfr. Code</th>
<th>Mfr. Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11–3–1</td>
<td>161–0104–0</td>
<td>5</td>
<td>1</td>
<td></td>
<td>CABLE ASSY,PWR.:3.18 AWG,240V,98.0 L, (OPTION A3—AUSTRALIAN)</td>
<td>S3109</td>
<td>SAA/3–OD3CCFC3X</td>
</tr>
<tr>
<td>−2</td>
<td>161–0104–0</td>
<td>6</td>
<td>1</td>
<td></td>
<td>CABLE ASSY,PWR.:3 × 0.75MM SQ,220V,98.0 L (OPTION A1—EUROPEAN)</td>
<td>S3109</td>
<td>VIIGSOPO—HO5VVF</td>
</tr>
<tr>
<td>−3</td>
<td>161–0104–0</td>
<td>7</td>
<td>1</td>
<td></td>
<td>CABLE ASSY,PWR.:3.1.0MM SQ,240 VOLT,2.5 M (OPTION A2—UNITED KINGDOM)</td>
<td>S3109</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td>−4</td>
<td>161–0104–0</td>
<td>8</td>
<td>1</td>
<td></td>
<td>CABLE ASSY,PWR.:3.18 AWG,98 L,SVT,GREY/BLK (OPTION A4—NORTH AMERICAN)</td>
<td>S3109</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td>−5</td>
<td>161–0167–0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>CABLE ASSY,PWR.:3.0 X 0.75,6A,240V,2.5M L (OPTION A5—SWITZERLAND)</td>
<td>S3109</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>CABLE ASSY,PWR.:3.18 AWG,92 L,SVT,TAN (STANDARD, SEE FIGURE 11–1–10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>ACCY PKG:(2) P6109B 2M PROBES W/ACCY (TDS310/320 ONLY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>ACCY PKG:(2) P6111B PASSIVE PROBES W/ACCY (TDS350 ONLY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>070–8568–0</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>MANUAL,TECH:INSTRUCTION</td>
<td>80009</td>
<td>070856804</td>
</tr>
<tr>
<td>070–8569–0</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>MANUAL,TECH:QUICK REF CARD</td>
<td>80009</td>
<td>070856903</td>
</tr>
<tr>
<td>070–8690–0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>MANUAL,TECH:USER,XYZ OF OSCILLOSCOPE</td>
<td>80009</td>
<td>070869001</td>
</tr>
</tbody>
</table>

Figure 11-3: Accessories
<table>
<thead>
<tr>
<th>Fig. & Index No.</th>
<th>Tektronix Part No.</th>
<th>Serial No. Effective</th>
<th>Qty</th>
<th>12345</th>
<th>Name & Description</th>
<th>Mfr. Code</th>
<th>Mfr. Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>012–0991–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>CABLE, COMPOSITE: IDC, GPIB: 2 METER</td>
<td>00779</td>
<td>553577–3</td>
</tr>
<tr>
<td>012–0991–0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>CABLE, GPIB: LOW EMI, 1 METER</td>
<td>00779</td>
<td>553577–2</td>
</tr>
<tr>
<td>012–1241–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>CA ASSY, INTCON: SHLD CMPST, RS-232, 9, 180 L</td>
<td>6D224</td>
<td>012–1241–00</td>
</tr>
<tr>
<td>012–1250–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>CABLE, INTCON: SHLD CMPST, PARA CENTRONIC</td>
<td>TK2193</td>
<td>CACC 3049</td>
</tr>
<tr>
<td>012–1298–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>CABLE, INTCON: RS232C SERIAL, 9 FEET</td>
<td>TK2500</td>
<td>C294–9</td>
</tr>
<tr>
<td>012–1379–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>CABLE ASSY: RS232, 9, 24 AWG</td>
<td>80009</td>
<td>012137900</td>
</tr>
<tr>
<td>012–1380–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>CABLE ASSY: RS232, 76.0 L, 9, 24 AWG</td>
<td>80009</td>
<td>012138000</td>
</tr>
<tr>
<td>016–0792–0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>CASE, CARRYING: 24.5 X 16.5 X 11.5</td>
<td>34416</td>
<td>2416BE11</td>
</tr>
<tr>
<td>016–1154–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>HOOD ASSEMBLY:</td>
<td>80009</td>
<td>016115400</td>
</tr>
<tr>
<td>016–1157–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>CASE, CARRYING: 26 X 22 X 12, HARD TRANSFER</td>
<td>34416</td>
<td>ORDER BY DESC</td>
</tr>
<tr>
<td>016–1158–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>CASE, CARRYING: SOFT Padded, Options</td>
<td>80009</td>
<td>016115800</td>
</tr>
<tr>
<td>016–1159–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>POUCH: POUCH & PLATE, GPS SIZE</td>
<td>80009</td>
<td>016115900</td>
</tr>
<tr>
<td>016–1166–0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>RACKMOUNT KIT:</td>
<td>80009</td>
<td>016116600</td>
</tr>
<tr>
<td>070–8571–0</td>
<td>4</td>
<td></td>
<td>1</td>
<td></td>
<td>MANUAL, TECH: PROGRAMMER</td>
<td>80009</td>
<td>070857104</td>
</tr>
<tr>
<td>070–8722–0</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>MANUAL, TECH: INSTRUCTION, OPT 3 P</td>
<td>80009</td>
<td>070872202</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>COVER, FRONT: ABS</td>
<td>(SEE FIGURE 11–1–20)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Glossary

AC Coupling
A mode that blocks the DC component of a signal but passes the dynamic (AC) component of the signal. Useful for observing an AC signal that is normally riding on a DC signal.

Acquisition
The process of sampling signals from input channels, digitizing the samples, processing the results into data points and assembling the data points into a waveform record. The waveform record is stored in memory.

Active Cursor
The cursor that moves when you turn the General Purpose Knob. The @ readout on the display shows the position of the active cursor.

Aliasing
A false representation of a signal due to insufficient sampling of high frequencies or fast transitions. A condition that occurs when an oscilloscope digitizes at an effective sampling rate that is too slow to reproduce the input signal. The waveform displayed on the oscilloscope may have a lower frequency than the actual input signal.

Area
Measurement of the waveform area taken over the entire waveform or the gated region. Expressed in volt-seconds. Area above ground is positive; area below ground is negative.

Attenuation
The degree the amplitude of a signal is reduced when it passes through an attenuating device such as a probe or attenuator, that is, the ratio of the input measure to the output measure. For example, a 10X probe attenuates, or reduces, the input voltage of a signal by a factor of 10.

Auto Trigger Mode
A trigger mode that causes the oscilloscope to automatically acquire if it does not detect a triggerable event.

Autoset
A function of the oscilloscope that automatically produces a stable waveform of usable size. Autoset sets up front-panel controls based on the characteristics of the active waveform. A successful autoset sets the volts per division, time per division, and trigger level to produce a coherent and stable waveform display.

Average Acquisition Mode
In this mode the oscilloscope acquires and displays a waveform that is the averaged result of several acquisitions. This reduces the apparent noise. The oscilloscope acquires data as in the sample mode and then averages it according to a specified number of averages.
Burst width
A timing measurement of the duration of a burst.

Cursors
Paired markers that you can use to make measurements between two waveform locations. The oscilloscope displays the values (expressed in volts or time) of the position of the active cursor and the distance between the two cursors.

Cycle Mean
An amplitude (voltage) measurement of the arithmetic mean over one cycle.

Cycle RMS
The true Root Mean Square voltage over one cycle.

DC Coupling
A mode that passes both AC and DC signal components to the circuit. Available for both the trigger system and the vertical system.

Digitizing
The process of converting a continuous analog signal such as a waveform to a set of discrete numbers representing the amplitude of the signal at specific points in time.

Edge Trigger
Triggering occurs when the oscilloscope detects the source passing through a specified voltage level in a specified direction (the trigger slope).

Envelope Acquisition Mode
A mode in which the oscilloscope acquires and displays a waveform that shows the variation extremes of several acquisitions.

Gated Measurements
A feature that lets you limit automated measurements to a specified portion of the waveform. You define the area of interest using the vertical cursors.

GPIB (General Purpose Interface Bus)
An interconnection bus and protocol that allows you to connect multiple instruments in a network under the control of a controller. Also known as IEEE 488 bus. It transfers data with eight parallel data lines, five control lines, and three handshake lines.

Ground (GND) Coupling
Coupling option that disconnects the input signal from the vertical system.

Hard Copy
An electronic copy of the display in a format useable by a printer or plotter.
High
The value used as 100% in automated measurements (whenever the
oscilloscope needs high ref, mid ref, and low ref values, as in fall time and
rise time measurements). May be calculated using either the min/max or
the histogram method. With the min/max method (most useful for general
waveforms), it is the maximum value found. With the histogram method
(most useful for pulses), it refers to the most common value found above
the mid point.

Holdoff, Trigger
A specified amount of time after a trigger signal that elapses before the
trigger circuit will accept another trigger signal. This helps ensure a stable
display.

Horizontal Bar Cursors
The two horizontal bars that you position to measure the voltage param-
ters of a waveform. The oscilloscope displays the value of the active
(moveable) cursor with respect to ground and the voltage value between
the bars.

Low
The value used as 0% in automated measurements (whenever the osci-
lloscope needs high ref, mid ref, and low ref values, as in fall time and rise
time measurements). May be calculated using either the min/max or the
histogram method. With the min/max method (most useful for general
waveforms), it is the minimum value found. With the histogram method
(most useful for pulses), it refers to the most common value found below
the mid point.

Main Menu
A group of related controls for a major oscilloscope function that the
oscilloscope displays across the bottom of the screen.

Main Menu Buttons
Bezel buttons under the main menu display. They allow you to select
items in the main menu.

Maximum
Amplitude (voltage) measurement of the maximum amplitude. Typically
the most positive peak voltage.

Mean
Amplitude (voltage) measurement of the arithmetic mean over the entire
waveform.

Minimum
Amplitude (voltage) measurement of the minimum amplitude. Typically
the most negative peak voltage.

Negative Duty Cycle
A timing measurement representing the ratio of the negative pulse width
to the signal period, expressed as a percentage.
Glossary

Negative Overshoot Measurement
Amplitude (voltage) measurement.

\[
\text{Negative Overshoot} = \frac{\text{Low} - \text{Min}}{\text{Amplitude}} \times 100\%
\]

Negative Width
A timing measurement of the distance (time) between two amplitude points — falling-edge MidRef (default 50%) and rising-edge MidRef (default 50%) — on a negative pulse.

Normal Trigger Mode
A mode on which the oscilloscope does not acquire a waveform record unless a valid trigger event occurs. It waits for a valid trigger event before acquiring waveform data.

Pixel
A visible point on the display. The oscilloscope display is 640 pixels wide by 480 pixels high.

Pop-Up Menu
A submenu of a main menu. Pop-up menus temporarily occupy part of the waveform display area and present additional choices associated with the main menu selection. You can cycle through the options in a pop-up menu by repeatedly pressing the main menu button underneath the pop-up.

Positive Duty Cycle
A timing measurement of the ratio of the positive pulse width to the signal period, expressed as a percentage.

Positive Overshoot
Amplitude (voltage) measurement.

\[
\text{Positive Overshoot} = \frac{\text{Max} - \text{High}}{\text{Amplitude}} \times 100\%
\]

Positive Width
A timing measurement of the distance (time) between two amplitude points — rising-edge MidRef (default 50%) and falling-edge MidRef (default 50%) — on a positive pulse.

Pretrigger
The specified portion of the waveform record that contains data acquired before the trigger event.

Real-Time Sampling
A sampling mode where the oscilloscope samples fast enough to completely fill a waveform record from a single trigger event. Use real-time sampling to capture single-shot or transient events.

Record Length
The specified number of samples in a waveform.

Reference Memory
Memory in an oscilloscope used to store waveforms or settings. You can use that waveform data later for processing. The oscilloscope saves the data even if you turn it off or unplug it.
Glossary

Roll
An acquisition mode useful at slow horizontal scale settings. Roll mode allows you to view the waveform as it is acquired point-by-point. The waveform appears to roll across the display.

Sample Acquisition Mode
The oscilloscope creates a record point by saving the first sample during each acquisition interval. This is the default mode of the acquisition system.

Sample Interval
The time interval between successive samples in a time base. For real-time digitizers, the sample interval is the reciprocal of the sample rate. For equivalent-time digitizers, the time interval between successive samples represents equivalent time, not real time.

Sampling
The process of capturing an analog input, such as a voltage, at a discrete point in time and holding it constant so that it can be quantized. Two general methods of sampling are: real-time sampling and equivalent-time sampling.

Selected Waveform
The waveform on which all measurements are performed, and which is affected by vertical position and scale adjustments. The light next to one of the channel selector buttons indicates the current selected waveform.

Side Menu
Menu that appears to the right of the display. These selections expand on main menu selections.

Side Menu Buttons
Bezel buttons to the right of the side menu display. They allow you to select items in the side menu.

Signal Path Compensation (SPC)
The ability of the oscilloscope to minimize the electrical offsets in the vertical, horizontal, and trigger amplifiers caused by ambient temperature changes and component aging. You should run SPC at the following times: when the ambient temperature varies more than 5 °C from the last SPC, when using settings equal to or less than 5 mV per division, and when performing critical measurements.

Tek Secure
This feature erases all waveform and setup memory locations (setup memories are replaced with the factory setup). Then it checks each location to verify erasure. This feature is useful where the oscilloscope is used to gather security sensitive data.

Time base
The set of parameters that let you define the time and horizontal axis attributes of a waveform record. The time base determines when and how long to acquire record points.
Glossary

Vertical Bar Cursors
The two vertical bars you position to measure the time parameter of a waveform record. The oscilloscope displays the value of the active (moveable) cursor with respect to trigger and the time value between the bars.

XY Format
A display format that compares the voltage level of two waveform records point by point. It is useful for studying phase relationships between two waveforms.

YT Format
The conventional oscilloscope display format. It shows the voltage of a waveform record (on the vertical axis) as it varies over time (on the horizontal axis).
Index

A

Aborting a hard copy, 3-43
AC input coupling, 3-18
AC trigger coupling, 3-26
AC trigger source, 3-26
Accessories
cables, 1-6
inspection of, 8-3
optional, 1-5–1-6
pouch, 1-5
probes, 1-6
standard, 1-5–1-6
ACQUIRE button, 3-8, 3-39
Acquire menu, 3-39
Acquisition, 3-39
autoset default, 2-11
average mode, 3-40
circuit description, 5-1
defined, G-1
evelope mode, 3-40
mode, 3-40
nominal specifications, 4-11
peak detect mode, 3-40
performance verification, 6-11
sample mode, 3-40
single sequence mode, 3-40
typical specifications, 4-7
warranted specifications, 4-3
Active cursor, G-1
Active-low signals, 5-1
Adjustment, 7-1
Interval, 7-1
prerequisites, 7-1
when to adjust, 7-1
Air intake space, 2-1
Aliasing, G-1
Amplitude measurement, 3-34
Analog bandwidth, 1-1
Area measurement, G-1
Attenuation, G-1
Attenuator circuit description, 5-1
Attenuators, adjustment, 7-4
Auto trigger mode, 3-27, G-1
Automated measurements, 1-1, 3-31
Autoset, 1-1, 2-11, G-1
defaults, 2-11
AUTOSET button, 2-11, 3-8
Average acquisition mode, 3-40, G-1

B

Bandwidth
analog, 1-1
autoset default, 2-12
selecting, 3-19
Block diagrams, module interconnection, 5-2
Burst width measurement, 3-33, G-2

C

Cabinet
inspection of, 8-3
removal and replacement, 8-13
Cables, 1-6
inspection of, 8-4
Cal menu, 3-47
Calibration test record, 6-4
Camera, 1-5
Capacitors, inspection of, 8-4
Carrying case, 1-5
soft sided, 1-5
Caution statements, xi
Centronics interface, 3-11, 3-44
cables, 1-6
Certificate of Calibration and Test Data Report, 1-4
CH 1, 3-5
CH 1 input, 3-10
CH 2, 3-5
CH 2 input, 3-10
Channel ground indicator, 3-9
Chassis, inspection of, 8-4
Circuit boards, inspection of, 8-4
Cleaning
agents, 8-2
compressed air, 8-2
terior, 8-3
instrument cabinet, 8-3
interior, 8-4
CLEAR MENU button, 3-4
Communications board, circuit description, 5-3
Compensating a probe, 2-7
Compensation, output, 3-5
Config menu, 3-47
Connecting a probe, 2-7
Connector, chassis ground, 3-5
Connectors, inspection of, 8-3
Contrast, 3-42
Controls
display, 3-4
horizontal system, 3-6
power, 3-4
trigger, 3-7
vertical system, 3-5
Conventions, performance verification, 6-1–6-4
Converter, time interval to voltage, 1-5
Cooling space, 2-1
Coupling
AC, 3-18, G-1
DC, 3-18
ground, 3-18, G-2
input, 3-18
trigger, 3-26
AC, 3-26
DC, 3-26
HF reject, 3-26
LF reject, 3-26
noise reject, 3-27
CRT, xiii
Current probe, 1-6
CURSOR button, 3-8, 3-35

TDS 310, TDS 320 & TDS 350 Instruction Manual I-1
Index

Cursors, 1-1, 3-35, G-2
 menu, 3-36
 paired, 3-36
 readouts, 3-9
 vertical bar indicators, 3-9
Cycle mean, measurement, 3-34, G-2
Cycle RMS, measurement, 3-34, G-2

D

Data handling, typical specifications, 4-9
DC coupling, G-2
 input, 3-18
 trigger, 3-26
Deluxe transit case, 1-5
Diag menu, 3-47
Diagnostics
 menu, 8-27
 onboard, 8-27
Digitizing, G-2
Dimensional drawing, 4-15
Disassembly procedures, 8-7
Display
 contrast, 3-42
 controls, 3-4, 3-41
 dot accumulate, 3-42
 dots, 3-42
 format, 3-42
 autoset default, 2-11
 intensity, 3-42
 autoset default, 2-11
 text and graticule, 3-42
 waveform, 3-42
 map, 3-9
 menu, 3-41
 menu locations, 6-2
 nominal specifications, 4-12
 persistence, 3-42
 style, 3-42
 autoset default, 2-11
 system, circuit description, 5-3
 vector accumulate, 3-42
 vectors, 3-42
DISPLAY button, 3-8, 3-41
Dot accumulate, 3-42
Dot display, 3-42
Duty cycle, measurement, 3-33, G-3, G-4

E

ECL switching threshold, 3-27
Edge trigger, G-2
Electric overload, xii
Electrostatic Discharge, Precautions, 8-1-8-6
EMI gasket removal and replacement, 8-15
Envelope acquisition mode, 3-40, G-2
Environmental, safety, and reliability, warranted specifications, 4-6
Equipment list
 adjustment, 7-1
 for module removal, 8-8-8-9
 for performance verification, 6-3-6-4
Error log, 8-29
Exploded views, 11-5, 11-9
EXT TRIG input, 3-10, 3-26
External triggering, 3-26

G

Gated measurements, G-2
Gating, 3-34
General care, 8-2
General Purpose Knob, 2-5, 3-8, 3-19, 3-21, 3-27, 3-34, 3-35, 3-37, 3-40, 3-42
 icon, 3-9
 readout, 3-9
GPIB interface, 3-44, G-2
 cables, 1-6
 port, 3-11
 talk only, 3-44
Graphical user interface, 1-1, 2-3
Graticle, full or frame, 3-42
Graticle intensity, 3-42
Ground coupling, 3-18, G-2
Grounding, xii

H

H Bars, 3-36
Hard copy, 3-43, G-2
 abort, 3-43
 configuring output, 3-43
 format, 3-44
 layout, 3-44
 output ports, 3-11
 port, 3-44
HARDCOPY button, 3-8, 3-43
HF reject trigger coupling, 3-26
High frequency reject, 3-26
High measurement, 3-33, G-3
High Ref, 3-33, 3-34, 3-35
High voltage probe, 1-6
High-low setup, 3-35
Histogram, 3-35
Holdoff, G-3
 adjustment, 3-27
 autoset default, 2-12
 range, 3-27
Horizontal bar cursors, G-3
HORIZONTAL MENU button, 3-6, 3-20
Horizontal position lock, reference waveforms, 3-23
Horizontal system, 3-20
 controls, 3-6
 menu, 3-20
 menu button, 3-6
 position, autoset default, 2-11
 POSITION knob, 3-6
 scale, autoset default, 2-11
 scale control, 3-6
 scale readout, 3-9

I

I/O interface field upgrade kit, 1-5
Input channels, 1-1
Input coupling, 3-18
Inputs
 CH 1 and CH 2, 3-10
 EXT TRIG, 3-10
Inspection
 exterior, 8-2
 interior, 8-3
Inspection and cleaning, 8-1–8-6
Inspection checklist
 external, 8-3
 internal, 8-4
Installation, 2-1
Instruction manual, xv
Intensity, 3-42
 autoset default, 2-11
 text and graticule, 3-42
 waveform, 3-42
Interfaces
 Centronics, 3-11
 GPIB, 3-11
 nominal specifications, 4-13
 RS-232, 3-11
 user, 2-3
Inverting a waveform, 3-18

K

Knob removal and replacement, 8-11
L

Landscape output, 3-44
LEVEL knob, 3-7
LF reject trigger coupling, 3-26
Line cord removal, 2-2, 8-9
Logic conventions, 5-1
Logic probe, 1-6
Low frequency reject, 3-26
Low measurement, 3-34, G-3
Low Ref, 3-33, 3-34, 3-35

M

Main board removal and replacement, 8-18
Main menu, 2-4, 3-9, G-3
 buttons, 2-5, 3-4, G-3
Maintenance, frequency of, 8-1
MATH button, 3-5, 3-21
Math waveform, 3-21
 menu, 3-17, 3-22
Maximum measurement, 3-34, G-3
Mean measurement, 3-34, G-3
MEASURE button, 3-8, 3-31
Measure menu, 3-32
Measurement definitions, 3-33
Measurements, 3-31
 amplitude, 3-34
 area, G-1
 automated, 1-1, 3-31
 activating, 3-32
 burst width, 3-33
 cycle mean, 3-34, G-2
 cycle RMS, 3-34, G-2
 duty cycle, G-3, G-4
 fall time, 3-33
 frequency, 3-33
 gated, G-2
 high, 3-33, G-3
 low, 3-34, G-3
 maximum, 3-34, G-3
 mean, 3-34, G-3
 minimum, 3-34, G-3
 negative duty cycle, 3-33
 negative overshoot, 3-33
 negative width, 3-33
 overshoot, G-4
 peak to peak, 3-34
 period, 3-33
 positive duty cycle, 3-33
 positive overshoot, 3-33
 positive width, 3-33
 removing, 3-34
 rise time, 3-33
 RMS, 3-34
 undershoot, G-4
 width, G-4
Mechanical characteristics, nominal specifications, 4-14
Menu button removal and replacement, 8-15
Menu elastomer removal and replacement, 8-15
Menu flex circuit removal and replacement, 8-17
Menu locations, 6-2
Menu maps, 3-13
Menus, 3-3
 acquisition, 3-39
 cal, 3-47
 config, 3-47
 cursor, 3-36
 diagnostics, 3-47, 8-27
 display, 3-41
 edge trigger, 3-26
 horizontal system, 3-6, 3-20
 math, 3-17, 3-22
 measure, 3-32
 pop-up, G-4
 reference waveform, 3-17, 3-24
 save/recall setup, 3-45
 system calibration, 7-2
 system I/O, 3-47
 trigger, 3-7
 utility, 3-47
 vertical system, 3-3, 3-17, 3-18
 video trigger, 3-28, 3-29
Mid Ref, 3-33, 3-34, 3-35
MIL-STD-45662A, 1-4
Min-max, 3-35
Minimum measurement, 3-34, G-3
Module replacement policy, 11-1
Modules, removal and installation of
 equipment required for, 8-8–8-9
 general instructions, 8-7–8-26
Index

Monitor
adjustments, 7-6
cleaning, 8-3
removal and replacement, 8-20
Monitor assembly, circuit description, 5-3

Overload, electric, xii
Overload measurement, G-4

Packaging for shipment, 8-43
Paired cursors, 3-36
PAL standard video signal, 3-28
Parts list, 11-1
Peak Detect mode, 3-40
Peak to peak measurement, 3-34
Performance tests, 4-3
Performance verification equipment required, 6-3
functional test, 6-7–6-10
general instructions, 6-1–6-4
of warranted characteristics, 6-11–6-20
partial vs. complete. See Performance Verification, General Instructions
prerequisites, 6-11
purpose and extent of. See Performance Verification, General Instructions
self tests, 6-5–6-6
test record, 6-4
trigger checks, 6-17
Period measurement, 3-33
Pixel, G-4
Pop-up menu, 2-5, G-4
Portrait output, 3-44
POSITION knob
horizontal, 3-6
vertical, 3-5
Positive duty cycle measurement, 3-33
Positive overshoot measurement, 3-33
Positive width measurement, 3-33
Power
connector, 2-1, 3-11
controls, 3-4
cord, xii, xiii, 2-1
clamp, 2-1
option, 1-3
removal, 2-2, 8-9
distribution system, nominal specifications, 4-13

Precautions, xi
Pretrigger, G-4
Preventive maintenance, 8-1
Probe coding interface, circuit description, 5-1
PROBE COMP output, 2-7
Probe compensation output, 3-5
typical specifications, 4-8
waveform, 2-8
Probes, 1-5, 2-7
accessory, 1-6
compensating, 2-7
connecting, 2-7
current, 1-6
high voltage, 1-6
logic, 1-6
specifications, 2-7
Procedures, inspection and cleaning, 8-2
Processor system, circuit description, 5-1
Product description, 1-1
Programmer manual, xvi, 1-3, 3-11, 3-47
Programming
via GPIB, 3-11
via RS-232, 3-11

Rackmount kit, 1-5
Readouts, 1-1
cursor, 3-9
general purpose knob, 3-9
horizontal scale, 3-9
status, 3-9
trigger, 3-9
toggle position (horizontal), 3-9
vertical scale, 3-9
READY indicator, 3-7
Real-time sampling, G-4
Rear cover removal and replacement, 8-13

Offset, 3-19
autoset default, 2-12
ON/STBY button, 2-1, 3-4
Operation
in explosive atmospheres, xii
section, 3-1
Option 14, 1-3, 3-11, 3-47
removal and replacement, 8-24
Optional accessories, 1-5
Options, 1-3
certificate of calibration, 1-4
I/O interfaces, 1-3
power cords, 1-3
scope cart, 1-4
thermal printer, 1-4
warranty-plus service, 1-4
Options and accessories, 1-3
Ordering parts, 11-1
Oscilloscope, grounding, xii
Oscilloscope cart, 1-5
Oscilloscope orientation, 8-8

on, 2-1–2-2
requirements, warranted, 4-6
source, xii
supply
circuit description, 5-3
removal and replacement, 8-22
S

Safety
characteristics, nominal specifications, 4-13
specific precautions, xii
summary, xi, xiii
symbols and terms, xi

Sample
acquisition mode, G-5
interval, G-5
mode, 3-40
rate, 1-1

Sampling, G-5

SAVE/RECALL SETUP button, 3-8, 3-45
Save/recall setup menu, 3-45
Saving front panel setups, 3-45
Saving waveforms, 3-22
Scope camera, 1-5
SEC/DIV knob, 3-6, 3-21
Seconds per division, fastest setting, 1-1
Selected waveform, G-5
Self calibration procedure, 7-2
Service options, 1-4
Servicing, precautions, xiii
SET LEVEL TO 50% button, 3-7, 3-27
Shock hazards, xii
Side menu, 3-9, G-5
buttons, 3-4, G-5
Signal path compensation, 7-2, G-5
theory of, 5-1
Single sequence mode, 3-40
Solder connections, inspection of, 8-4
SPC, G-5
Specifications, 4-1-4-2
Standard accessories, 1-5
Start up, 2-1
Status readouts, 3-9
Symbols and terms, xi
System calibration menu, 7-2
System I/O, 3-44
System I/O menu, 3-47

T

Tek Secure, 3-24, 3-46, 3-47, G-5
test record, 6-4
text intensity, 3-42
 Theory of operation, 5-1
Thermal printer, 1-4
time base, 3-21, G-5
delayed, 3-21
delayed runs after main, 3-21
fastest setting, 1-1

intensified zone, 3-21
main, 3-21
nominal specifications, 4-12
performance verification, 6-15
readout, 3-9
warranted specifications, 4-4
Time base setting, autoset default, 2-11
Time interval to voltage set, 1-5
TOGGLE button, 3-8, 3-35, 3-37
Transit case, 1-5
TRIG’D indicator, 3-7

Trigger
couplings, 3-7
coupling
AC, 3-26
autoset default, 2-12
DC, 3-26
HF reject, 3-26
LF Reject, 3-26
noise reject, 3-27
decode, 3-25, G-2
decode menu, 3-26
decode external, 3-26
holdoff
adjustment, 3-27
autoset default, 2-12
range, 3-27
horizontal position adjustment, 3-21
horizontal position readout, 3-9
level
adjustment, 3-27
autoset default, 2-12
indicator, 3-9
set to 50%, 3-27
LEVEL knob, 3-27
mode, 3-27
normal, 3-27
roll, 3-27
nominal specifications, 4-12
point indicator, 3-9
position, autoset default, 2-11
readout, 3-9
slope, 3-27
autoset default, 2-12
source, 3-26
AC, 3-26
autoset default, 2-11
T, 3-42
type, autoset default, 2-11
typical specifications, 4-8
video, 3-25, 3-28
menu, 3-28, 3-29
point adjustment, 3-28
source, mode, and holdoff, 3-28
warranted specifications, 4-5
TRIGGER MENU button, 3-7, 3-25
Index

Triggering, 3-25
 edge, 3-25
 external, 3-26
 on the ECL switching threshold, 3-27
 on the TTL switching threshold, 3-27
 video, 3-28
Trim ring removal and replacement, 8-15
Troubleshooting, 8-27
TTL switching threshold, 3-27
Typical specifications, 4-7

VERTICAL MENU button, 3-5, 3-17
Vertical resolution, 1-1
Vertical scale readout, 3-9
Vertical system, 3-17
 controls, 3-5
 coupling, autoset default, 2-12
 fine scale adjustments, 3-19
 menu, 3-18
 menu button, 3-5
 offset, autoset default, 2-12
 offset adjustment, 3-19
 position adjustments, 3-19
 POSITION control, 3-5
 scale, autoset default, 2-12
 scale control, 3-5
Vertical system menu, 3-3
VGA display, 1-3
Video trigger, 3-28
 source, mode, and holdoff, 3-28
 trigger point adjustment, 3-28
VOLTS/DIV knob, 3-5

Warning statements, xi
Warranted specifications, 4-3
 performance conditions for, 4-3
Warranty-plus service options, 1-4

WAVEFORM OFF button, 3-5, 3-24,
 3-32
Waveform Rate, 4-12
Waveform record icon, 3-9
Waveforms
 intensity, 3-42
 inverting, 3-18
 math, 3-21
 reference, 3-22
 horizontal lock, 3-23
 saving and recalling, 3-22
 selecting, 3-5
Width measurement, 3-33, G-4

Undershoot measurement, G-4
User interface, 2-3
UTILITY button, 3-8, 3-43
Utility menu, 3-47

V

V Bars, 3-36
Vector
 accumulate, 3-42
 display, 3-42
Vertical bar
 cursors, G-6
 indicators, 3-9

Warning statements, xi
Warranted specifications, 4-3
 performance conditions for, 4-3
Warranty-plus service options, 1-4

X

X-Radiation, xiii
XY
 format, G-6
 mode, 3-42
XYZs of Analog and Digital Oscilloscopes, xv, xvi, 1-5

Y

YT
 format, G-6
 mode, 3-42